Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Remarks on the non-Cohen-Macaulay locus
of Noetherian schemes


Author: Nguyen Tu Cuong
Journal: Proc. Amer. Math. Soc. 126 (1998), 1017-1022
MSC (1991): Primary 13C99; Secondary 13H10, 14M99
DOI: https://doi.org/10.1090/S0002-9939-98-04160-4
MathSciNet review: 1425118
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we give a notion of polynomial type $p(X)$ of a Noetherian scheme $X$ and define the function $dp:\, X\longrightarrow \mathbb{Z}$ by $dp(x)=\dim O_{X,x} -p(O_{X,x} )$ for all $x\in X.$ Then we show that if $X$ admits a dualizing complex and $X$ is equidimensional, $dp $ is (lower) semicontinuous; moreover, in that case, the non-Cohen-Macaulay locus nCM$(X)=\{ x\in X\mid O_{X,x}$ is not Cohen-Macaulay} is biequidimensional iff $dp $ is constant on nCM$(X).$


References [Enhancements On Off] (What's this?)

  • [C1] Cuong, N.T., On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Cambridge Phil. Soc. 109(2) (1991), 479-488. MR 92b:13034
  • [C2] Cuong, N.T., On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, Nagoya Math. J. 125 (1992), 105-114. MR 93c:1348
  • [C-M] Cuong, N.T., Minh, N.D., On the openness of the locus of points having polynomial type bounded above by a constant, Vietnam J. of Math. 20(1) (1992), 71-78. MR 96j:13023
  • [G] Grothendieck, A., Elements de Geometrie Algebrique, IV, vol. 24, Publ. Math. I.H.E.S., 1965. MR 33:7330
  • [H1] Hartshorne, R., Residues and Duality, vol. 20, Lect. Notes Math. Berlin Heidelberg New York, Springer-Verlag, 1966. MR 36:5145
  • [H2] Hartshorne, R., Algebraic Geometry, Berlin Heidelberg New York, SpringerVerlag, 1977. MR 57:3116
  • [M] Matsumura, H., Commutative Algebra, Second Edition, London, Benjamin, 1980. MR 82i:13003
  • [S] Serre, J-P., Algèbre locale. Multiplicités, vol. 11, Lect. Notes Math. Berlin Heidelbeg New York, Springer-Verlag, 1965. MR 34:1352
  • [Sch] Schenzel, P., Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, vol. 907, Lect. Notes Math. Berlin Heidelberg New York, Springer-Verlag, 1982. MR 83i:13013

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13C99, 13H10, 14M99

Retrieve articles in all journals with MSC (1991): 13C99, 13H10, 14M99


Additional Information

Nguyen Tu Cuong
Affiliation: Institute of Mathematics, P.O. Box 631, BoHo, 10.000 Hanoi, Vietnam
Email: ntcuong@thevinh.ac.vn

DOI: https://doi.org/10.1090/S0002-9939-98-04160-4
Received by editor(s): July 3, 1995
Received by editor(s) in revised form: October 7, 1996
Additional Notes: The author is partially supported by the National Basic Research Program of Vietnam.
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society