Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On a class of Riesz-Fischer sequences


Author: Robert M. Young
Journal: Proc. Amer. Math. Soc. 126 (1998), 1139-1142
MSC (1991): Primary 42A80
DOI: https://doi.org/10.1090/S0002-9939-98-04416-5
MathSciNet review: 1452835
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we give necessary and sufficient conditions for a system of complex exponentials $\{e^{i\lambda _nt}\}$ to form a Riesz-Fischer sequence in $L^2(-A,A)$ for every positive number $A$. The result provides a significant strengthening of the sufficient conditions recently stated by R. M. Reid (1995).


References [Enhancements On Off] (What's this?)

  • 1. N. K. Bari, Biorthogonal systems and bases in Hilbert space, U\v{c}en. Zap. Mosk. Gos. Univ. 148, Mat. 4 (1951), 69-107. MR 14:289b
  • 2. Arne Beurling, The collected works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Complex analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. MR 1057613
    Arne Beurling, The collected works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Harmonic analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. MR 1057614
  • 3. R. P. Boas, Jr., A general moment problem, Amer. J. Math. 63 (1941), 361-370. MR 2:281d
  • 4. A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), 367-379.
  • 5. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52. MR 0222554, https://doi.org/10.1007/BF02395039
  • 6. N. Levinson, ``Gap and Density Theorems'', Amer. Math. Soc. Colloq. Publ., Vol. 26, Amer. Math. Soc., New York, 1940. MR 2:180d
  • 7. R.E.A.C. Paley and N. Wiener, ``Fourier Transforms in the Complex Domain,'' Amer. Math. Soc. Colloq. Publ., Vol. 19, Amer. Math. Soc., New York, 1934.
  • 8. Russell M. Reid, A class of Riesz-Fischer sequences, Proc. Amer. Math. Soc. 123 (1995), no. 3, 827–829. MR 1223519, https://doi.org/10.1090/S0002-9939-1995-1223519-0
  • 9. Kristian Seip, On the connection between exponential bases and certain related sequences in 𝐿²(-𝜋,𝜋), J. Funct. Anal. 130 (1995), no. 1, 131–160. MR 1331980, https://doi.org/10.1006/jfan.1995.1066
  • 10. Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 591684

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42A80

Retrieve articles in all journals with MSC (1991): 42A80


Additional Information

Robert M. Young
Affiliation: Department of Mathematics, Oberlin College, Oberlin, Ohio 44074
Email: fyoungb@ocvaxa.cc.oberlin.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04416-5
Keywords: Riesz-Fischer sequence, moment problem, upper uniform density
Received by editor(s): September 23, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society