Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

High order moments of character sums


Authors: Todd Cochrane and Zhiyong Zheng
Journal: Proc. Amer. Math. Soc. 126 (1998), 951-956
MSC (1991): Primary 11L40, 11D79
DOI: https://doi.org/10.1090/S0002-9939-98-04625-5
MathSciNet review: 1473660
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the upper bound

\begin{equation*}\frac{1}{p-1} \sum _{\chi \ne \chi _{o}}\big | \sum _{x=a+1}^{a+B} \chi (x) \big |^{2k} \ll _{\epsilon ,k} p^{k-1 +\epsilon } + B^{k} p^{\epsilon }, \end{equation*}

with $p$ a prime and $k$ any positive integer, the sum being over all nonprincipal multiplicative characters $\pmod p$.


References [Enhancements On Off] (What's this?)

  • [1] A. Ayyad, T. Cochrane and Z. Zheng, The congruence $x_{1}x_{2} \equiv x_{3}x_{4} \pmod p$, the equation $x_{1}x_{2}=x_{3}x_{4}$ and mean values of character sums, J. Number Theory 59 (2) (1996), 398-413. MR 97i:11091
  • [2] D.A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. (3) 13 (1963), 524-536. MR 26:6133
  • [3] H.L. Montgomery and R.C. Vaughan, Exponential sums with multiplicative coefficients, Inventiones Math. 43 (1977), 69-82. MR 56:15579
  • [4] H.L. Montgomery and R.C. Vaughan, Mean values of character sums, Canad. J. Math. 31 (3) (1979), 476-587. MR 81c:10043

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11L40, 11D79

Retrieve articles in all journals with MSC (1991): 11L40, 11D79


Additional Information

Todd Cochrane
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
Email: cochrane@math.ksu.edu

Zhiyong Zheng
Affiliation: Department of Mathematics, Zhongshan University, Guangzhou 510275, People’s Republic of China

DOI: https://doi.org/10.1090/S0002-9939-98-04625-5
Keywords: Character sums, congruences
Received by editor(s): February 25, 1996
Communicated by: Dennis A. Hejhal
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society