Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the characterization of certain
similarly ordered super-additive functionals


Author: Heinz J. Skala
Journal: Proc. Amer. Math. Soc. 126 (1998), 1349-1353
MSC (1991): Primary 28C05; Secondary 47H07, 60A05, 90A05
DOI: https://doi.org/10.1090/S0002-9939-98-04702-9
MathSciNet review: 1476392
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Functionals which behave (sub-, super-) additively on similarly ordered functions occur quite naturally in many contexts. In the present paper we characterize (super-) additive functionals which are defined on a family of functions with the Stone-property in terms of their naturally adjoined dyadic martingales. As corollaries we obtain essential generalizations of integral representations as derived by Schmeidler (1986) and discussed in a recent monograph of Denneberg (1994).


References [Enhancements On Off] (What's this?)

  • 1. G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1953/54), 131-295. MR 18:295g
  • 2. C. Dellacherie, Quelques commentaires sur les prolongements de capacités, Séminaire de probabilités V, Strasbourg, 77-81, Springer, Berlin, Heidelberg, New York (1971). MR 52:3568
  • 3. D. Denneberg, Non-Additive Measure and Integral, Kluwer Academic Publishers, Doordrecht/Boston/London (1994). MR 96c:28017
  • 4. I. Gilboa, Expected utility with purely subjective non-additive probabilities, J. Math. Ec. 16 (1987), 65-88. MR 88e:90012
  • 5. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espace du type $C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15:438b
  • 6. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge (1934).
  • 7. P. E. Kopp, Martingales and Stochastic Integrals, Cambridge Univ. Press, Cambridge (1984). MR 86i:60004
  • 8. D. Schmeidler, Integral representation without additivity, Proc. A.M.S. 97 (1986), 255-261. MR 87f:28014
  • 9. D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57 (1989), 571-587. MR 90e:90019

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 28C05, 47H07, 60A05, 90A05

Retrieve articles in all journals with MSC (1991): 28C05, 47H07, 60A05, 90A05


Additional Information

Heinz J. Skala
Affiliation: Department of Statistics, University of Paderborn, Warburgerstrasse 100, 33095 Paderborn, Germany

DOI: https://doi.org/10.1090/S0002-9939-98-04702-9
Keywords: Similarly ordered, comonotonic, integral representation, martingales
Received by editor(s): August 29, 1996
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society