Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 

 

Renormalized oscillation theory
for Dirac operators


Author: Gerald Teschl
Journal: Proc. Amer. Math. Soc. 126 (1998), 1685-1695
MSC (1991): Primary 34C10, 39L40; Secondary 34B24, 34L15
MathSciNet review: 1443411
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Oscillation theory for one-dimensional Dirac operators with separated boundary conditions is investigated. Our main theorem reads: If $\lambda _{0,1}\in \mathbb R$ and if $u,v$ solve the Dirac equation $H u= \lambda _0 u$, $H v= \lambda _1 v$ (in the weak sense) and respectively satisfy the boundary condition on the left/right, then the dimension of the spectral projection $P_{(\lambda _0, \lambda _1)}(H)$ equals the number of zeros of the Wronskian of $u$ and $v$. As an application we establish finiteness of the number of eigenvalues in essential spectral gaps of perturbed periodic Dirac operators.


References [Enhancements On Off] (What's this?)

  • 1. W. Bulla, F. Gesztesy, and K. Unterkofler, On relativistic energy band corrections in the presence of periodic potentials, Lett. Math. Phys. 15 (1988), no. 4, 313–324. MR 952454, 10.1007/BF00419589
  • 2. W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
  • 3. I. S. Frolov, An inverse scattering problem for the Dirac system on the entire axis, Dokl. Akad. Nauk SSSR 207 (1972), 44–47 (Russian). MR 0316804
  • 4. F. Gesztesy, B. Simon, and G. Teschl, Zeros of the Wronskian and renormalized oscillation theorems, Am. J. Math. 118, 571-594 (1996). CMP 96:13
  • 5. Philip Hartman, Differential equations with non-oscillatory eigenfunctions, Duke Math. J. 15 (1948), 697–709. MR 0027927
  • 6. Philip Hartman, A characterization of the spectra of one-dimensional wave equations, Amer. J. Math. 71 (1949), 915–920. MR 0033419
  • 7. Philip Hartman and Calvin R. Putnam, The least cluster point of the spectrum of boundary value problems, Amer. J. Math. 70 (1948), 849–855. MR 0027928
  • 8. D. B. Hinton and J. K. Shaw, Asymptotics of solutions and spectra of perturbed periodic Hamiltonian systems, Differential equations and mathematical physics (Birmingham, Ala., 1986), Lecture Notes in Math., vol. 1285, Springer, Berlin, 1987, pp. 169–174. MR 921266, 10.1007/BFb0080594
  • 9. D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of perturbed periodic Hamiltonian systems, Rocky Mountain J. Math. 17 (1987), no. 4, 727–748. MR 923743, 10.1216/RMJ-1987-17-4-727
  • 10. D. B. Hinton, A. B. Mingarelli, T. T. Read, and J. K. Shaw, On the number of eigenvalues in the spectral gap of a Dirac system, Proc. Edinburgh Math. Soc. (2) 29 (1986), no. 3, 367–378. MR 865270, 10.1017/S0013091500017818
  • 11. K. Kreith Oscillation Theory, Lecture Notes in Mathematics 324, Springer, Berlin 1973.
  • 12. B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), vol. 59, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian. MR 1136037
  • 13. Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421
  • 14. William T. Reid, Sturmian theory for ordinary differential equations, Applied Mathematical Sciences, vol. 31, Springer-Verlag, New York-Berlin, 1980. With a preface by John Burns. MR 606199
  • 15. F. S. Rofe-Beketov, A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential, Dokl. Akad. Nauk SSSR 156 (1964), 515–518 (Russian). MR 0160967
  • 16. J.C.F. Sturm Mémoire sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1, 106-186 (1836).
  • 17. C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York-London, 1968. Mathematics in Science and Engineering, Vol. 48. MR 0463570
  • 18. G. Teschl, Oscillation theory and renormalized oscillation theory for Jacobi operators, J. Diff. Eqs. 129, 532-558 (1996). CMP 96:17
  • 19. Bernd Thaller, The Dirac equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992. MR 1219537
  • 20. S. Timischl, A trace formula for one-dimensional Dirac operators, diploma thesis, University of Graz, Austria, 1995.
  • 21. K. Unterkofler, Periodische Potentiale in der eindimensionalen Diracgleichung, diploma thesis, Technical University of Graz, Austria, 1986.
  • 22. Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320
  • 23. Joachim Weidmann, Zur Spektraltheorie von Sturm-Liouville-Operatoren, Math. Z. 98 (1967), 268–302 (German). MR 0213915
  • 24. Joachim Weidmann, Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen, Math. Z. 119 (1971), 349–373 (German). MR 0285758
  • 25. Joachim Weidmann, Absolut stetiges Spektrum bei Sturm-Liouville-Operatoren und Dirac-Systemen, Math. Z. 180 (1982), no. 3, 423–427 (German). MR 664527, 10.1007/BF01214182

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34C10, 39L40, 34B24, 34L15

Retrieve articles in all journals with MSC (1991): 34C10, 39L40, 34B24, 34L15


Additional Information

Gerald Teschl
Affiliation: Institut für Reine und Angewandte Mathematik RWTH Aachen 52056 Aachen Germany
Address at time of publication: Institut für Mathematik, Universität Wien, Strudelhofgasse 4, 1090 Vienna, Austria
Email: gerald@mat.univie.ac.at

DOI: http://dx.doi.org/10.1090/S0002-9939-98-04310-X
Keywords: Oscillation theory, Dirac operators, spectral theory
Received by editor(s): November 7, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 by the author