Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Norms of embeddings
of logarithmic Bessel potential spaces


Authors: David E. Edmunds, Petr Gurka and Bohumír Opic
Journal: Proc. Amer. Math. Soc. 126 (1998), 2417-2425
MSC (1991): Primary 46E35, 46E30
DOI: https://doi.org/10.1090/S0002-9939-98-04327-5
MathSciNet review: 1451796
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega $ be a subset of $\mathbb{R}\sp{n}$ with finite volume, let $\nu >0$ and let $\Phi $ be a Young function with $\Phi (t) = \exp (\exp t\sp{\nu })$ for large $t$. We show that the norm on the Orlicz space $L\sb {\Phi } (\Omega )$ is equivalent to

\begin{equation*}\sup \sb {1<q<\infty } (e+\log q)\sp{-1/\nu } \|f\|\sb {L\sp{q}(\Omega )}. \end{equation*}

We also obtain estimates of the norms of the embeddings of certain logarithmic Bessel potential spaces in $L\sp{q}(\Omega )$ which are sharp in their dependences on $q$ provided that $q$ is large enough.


References [Enhancements On Off] (What's this?)

  • [A] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. MR 56:9247
  • [AS] N. Aronszajn and K. T. Smith, Theory of Bessel potentials, Part I, Ann. Inst. Fourier 11 (1961), 385-475. MR 26:1485
  • [BR] C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. 175 (1980), 1-72. MR 81i:42020
  • [BS] C. Bennett and R. Sharpley, Interpolation of operators, Pure Appl. Math. 129, Academic Press, New York, 1988. MR 89e:46001
  • [EGO I] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J. 44 (1995), 19-43. MR 96f:47048
  • [EGO II] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151-181. MR 96i:46036
  • [EGO III] D. E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh 126A (1996), 995-1009. CMP 97:03
  • [EGO IV] D. E. Edmunds, P. Gurka and B. Opic, On embeddings of logarithmic Bessel potential spaces, J. Functional Anal. 146 (1997), 116-150. CMP 97:12
  • [EOP] W. D. Evans, B. Opic and L. Pick, Interpolation of operators on scales of generalized Lorentz-Zygmund spaces, Math. Nachr. 182 (1996), 127-181. CMP 97:04
  • [ET] D. E. Edmunds and H. Triebel, Function spaces, entropy numbers and differential operators, Cambridge University Press, Cambridge, 1996, pp. 252. MR 97h:46045
  • [FLS] N. Fusco, P. L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc. 124 (2) (1996), 561-565. MR 96d:46035
  • [KJF] A. Kufner, O. John and S. Fu\v{c}ík, Function spaces, Academia, Prague, 1977. MR 58:2189
  • [S] R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J. 21 (1972), 841-842. MR 45:2466
  • [T] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484. MR 35:7121
  • [Tr] H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces, Proc. London Math. Soc. 66 (3) (1993), 589-618. MR 94g:46042
  • [Z] W. Ziemer, Weakly differentiable functions, Graduate Texts in Math. 120, Springer, Berlin, 1989. MR 91e:46046

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E35, 46E30

Retrieve articles in all journals with MSC (1991): 46E35, 46E30


Additional Information

David E. Edmunds
Affiliation: Centre for Mathematical Analysis and its Applications, University of Sussex, Falmer, Brighton BN1 9QH, England
Email: d.e.edmunds@sussex.ac.uk

Petr Gurka
Affiliation: Department of Mathematics, Czech University of Agriculture, 16521 Prague 6, Czech Republic
Email: gurka@tf.czu.cz

Bohumír Opic
Affiliation: Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Prague 1, Czech Republic
Email: opic@math.cas.cz

DOI: https://doi.org/10.1090/S0002-9939-98-04327-5
Keywords: Generalized Lorentz-Zygmund spaces, logarithmic Bessel potential spaces, Orlicz spaces of double and single exponential types, equivalent norms, embeddings
Received by editor(s): January 23, 1997
Additional Notes: This research was partially supported by grant no. 201/94/1066 of the Grant Agency of the Czech Republic and by NATO Collaborative Research Grant no. CRG 930358; the research of the second author was also partially supported by EPSRC grant no. GR/L02937.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society