Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global iteration schemes
for strongly pseudo-contractive maps


Author: C. E. Chidume
Journal: Proc. Amer. Math. Soc. 126 (1998), 2641-2649
MSC (1991): Primary Primnary, 47H17, 47H06, 47H15
DOI: https://doi.org/10.1090/S0002-9939-98-04322-6
MathSciNet review: 1451791
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $E$ is a real uniformly smooth Banach space, $K$ is a nonempty closed convex and bounded subset of $E$, and $T:K\to K$ is a strong pseudo-contraction. It is proved that if $T$ has a fixed point in $K$ then both the Mann and the Ishikawa iteration processes, for an arbitrary initial vector in $K$, converge strongly to the unique fixed $T$. No continuity assumption is necessary for this convergence. Moreover, our iteration parameters are independent of the geometry of the underlying Banach space and of any property of the operator.


References [Enhancements On Off] (What's this?)

  • 1. Kang Zon Bao, Iterative approximation of the solution of a locally Lipschitzian equation, Appl. Math. Mech. (English Ed.) 12(4), (1991), 409-414, translated from (Chinese) Appl. Math. Mech. 12(4), (1991), 385-389. MR 92h:47090
  • 2. M. Bethke, Approximation von fixpunkten streng pseudo kontritiver operatoren (Approximation of fixed points of strongly pseudo-contractive operators), Math. Naturnias Fak. 27(2), (1989), 263-270. MR 91m:47083
  • 3. F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882. MR 38:581
  • 4. C.E. Chidume, Iterative approximation of fixed points of Lipschitz strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (2), (1987), 283-288. MR 87m:47122
  • 5. C.E. Chidume, An iterative process for nonlinear Lipschitzian strongly accretive mappings in $L_p$ spaces, J. Math. Anal. Appl. 151 (1990), 453-461. MR 91k:47131
  • 6. C.E. Chidume, Approximation of fixed points of strongly pseudo-contractive mappings, Proc. Amer. Math. Soc. 120(2), (1994), 545-551. MR 94d:47056
  • 7. C.E. Chidume and M.O. Osilike, Ishikawa iteration process for nonlinear Lipschitz strongly accretive mappings, J. Math. Anal. Appl. 192 (1995), 727-741. MR 96i:47099
  • 8. C.E. Chidume and M.O. Osilike, Fixed point iterations for strictly hemi-contractive maps in uniformly smooth Banach spaces, Numer. Funct. Anal. and Optim. 15 (7& 8), (1994), 779-790. MR 95i:47106
  • 9. I. Ciorenescu, Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, 1990. MR 91m:46021
  • 10. K. Deimling, Nonlinear Functional Analysis, Springer, Berlin (1985). MR 86j:47001
  • 11. L. Deng, On Chidume's open questions, J. Math. Anal. Appl. 174 (2), (1993), 441-449. MR 94b:47073
  • 12. L. Deng, Iteration processs for nonlinear Lipschitzian strongly accretive mappings in $L_p$ spaces, J. Math. Anal. Appl. 188 (1994), 128-140. MR 96f:47124
  • 13. L. Deng, An iterative process for nonlinear Lipschitz and strongly accretive mappings in uniformly convex and uniformly smooth Banach spaces, Acta Applicande Mathematicae 32 (1993), 183-196. MR 94i:47086
  • 14. L. Deng and X.P. Ding, Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces, Nonlinear Analysis, TMA 24 (7), (1995), 981-987. MR 96a:47096
  • 15. J.A. Gatica and W.A. Kirk, Fixed point theorems for Lipschitz pseudo-contractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111-115. MR 46:6114
  • 16. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc. 44(1), (1974), 147-150. MR 49:1243
  • 17. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. MR 37:1820
  • 18. K. Liu, Iterative method for constructing zeros of accretive sets, M. Sc. Thesis, Xi'an Jaiotong University, 1984.
  • 19. G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 29:6319
  • 20. M.G. Crandall and A. Pazy, On the range of accretive operators, Israel J. Math. 27 (1977), 235-246. MR 56:1142
  • 21. S. Reich, Constructive techniques for accretive and monotone operators, in Applied Nonlinear Analysis, (V. Lakshmikanthan, Ed.), pp. 335-345, Academic Press, New York (1979). MR 80g:47059
  • 22. S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Anal. 2 (1978), 85-92. MR 81b:47065
  • 23. S. Reich, Constructing zeros of accretive operators, I, II, Appl. Anal. 8 (1979), 349-352, Appl. Anal. 9 (1979), 159-163. MR 82d:65052b; MR 82d:65052a
  • 24. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 85 (1980), 287-292. MR 82a:47050
  • 25. O. Nevanlinna and S. Reich, Strong convergence of contraction semigroup and of iterative methods for accretive operators in Banach spaces, Israel J. Math. 32 (1979), 44-58. MR 80e:47057
  • 26. Zongben Xu and G.F. Roach, Characteristic inequalities for uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991), 189-210. MR 92i:46023
  • 27. Zongben Xu and G.F. Roach, A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl. 167 (1992), 340-354. MR 93e:47086
  • 28. Zongben Xu, Zhang Bo and G.F. Roach, On the steepest descent approximation to solutions of nonlinear strongly accretive operator equations, J. Comput. Math. 7(2), 1992.
  • 29. J. Schu, On a theorem of C.E. Chidume concerning the iterative approximation of fixed points, Math. Nachr. 153 (1991), 313-319. MR 93b:47123
  • 30. J. Schu, Iterative construction of fixed points of strictly pseudo-contractive mappings, Applicable Analysis 40 (1991), 67-72. MR 92c:47072
  • 31. K.K. Tan and H.K. Xu, Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), 9-21. MR 94g:47085
  • 32. M.M. Vainberg, On the convergence of the process of steepest descent for nonlinear equations, Sibirsk Math. Z. 2(1961), 201-220. MR 23:A4026
  • 33. M.M. Vainberg, Variational method and method of monotone operators in the theory of nonlinear equations, John Wiley and Sons, 1973. MR 57:7286b
  • 34. Xinlong Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731. MR 92b:47099
  • 35. H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis, TMA 16(2), (1991), 1127-1138. MR 92e:47126
  • 36. Z. Xu and G.F. Roach, A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl. 167 (1992), 340-354. MR 93e:47086
  • 37. E. Zarantonello, Solving functional equations by constructive averaging, Tech. Report 160, US Army Research Centre, Madison, WI, 1960.
  • 38. E. Zarantonello, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc. (N.S.) 70 (1964), 781-787. MR 30:3389

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): Primnary, 47H17, 47H06, 47H15

Retrieve articles in all journals with MSC (1991): Primnary, 47H17, 47H06, 47H15


Additional Information

C. E. Chidume
Affiliation: International Centre for Theoretical Physics, 34100 Trieste, Italy
Email: chidume@ictp.trieste.it

DOI: https://doi.org/10.1090/S0002-9939-98-04322-6
Keywords: Strong pseudocontractions, accretive operators, uniformly smooth Banach spaces, duality map
Received by editor(s): April 22, 1996
Received by editor(s) in revised form: January 27, 1997
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society