Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The sharp Sobolev inequality and the Banchoff-Pohl inequality on surfaces


Author: Ralph Howard
Journal: Proc. Amer. Math. Soc. 126 (1998), 2779-2787
MSC (1991): Primary 53C42; Secondary 53A04, 53C65
DOI: https://doi.org/10.1090/S0002-9939-98-04336-6
MathSciNet review: 1451806
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $(M,g)$ be a complete two dimensional simply connected Riemannian manifold with Gaussian curvature $K\le-1$. If $f$ is a compactly supported function of bounded variation on $M$, then $f$ satisfies the Sobolev inequality

\begin{displaymath}4\pi \int _M f^2\,dA+ \left(\int _M |f|\,dA \right)^2\le \left(\int _M\|\nabla f\|\,dA \right)^2. \end{displaymath}

Conversely, letting $f$ be the characteristic function of a domain $D\subset M$ recovers the sharp form $4\pi A(D)+A(D)^2\le L(\partial D)^2$ of the isoperimetric inequality for simply connected surfaces with $K\le -1$. Therefore this is the Sobolev inequality ``equivalent'' to the isoperimetric inequality for this class of surfaces. This is a special case of a result that gives the equivalence of more general isoperimetric inequalities and Sobolev inequalities on surfaces.

Under the same assumptions on $(M,g)$, if $c\colon[a,b]\to M$ is a closed curve and $w_c(x)$ is the winding number of $c$ about $x$, then the Sobolev inequality implies

\begin{displaymath}4\pi\int _M w_c^2\,dA+ \left(\int _M|w_c|\,dA \right)^2\le L(c)^2, \end{displaymath}

which is an extension of the Banchoff-Pohl inequality to simply connected surfaces with curvature $\le -1$.


References [Enhancements On Off] (What's this?)

  • 1. T. F. Banchoff and W. F. Pohl, A generalization of the isoperimetric inequality, Jour. Diff. Geo. 6 (1971), 175-213. MR 46:4449
  • 2. J. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren, vol. 285, Springer, Berlin, 1980. MR 89b:52020
  • 3. I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, New York, 1984. MR 86g:58140
  • 4. K. Enomoto, A generalization of the isoperimetric inequality on $S^2$ and flat tori in $S^3$, Proc. Amer. Math. Soc. 120 (1994), no. 2,, 553-558. MR 94d:53001
  • 5. H. Federer and W. H. Fleming, Noraml and integral currents, Ann. Math. 72 (1960), 458-520. MR 23:A588
  • 6. W. Fleming and R. Rishel, An integral formula for the total gradient variation, Arch. Math. 11 (1960), 218-222. MR 22:5710
  • 7. L. Gysin, The isoperimetric inequality for nonsimple closed curves, Proc. Amer. Math. Soc 118 (1993), no. 1, 197-203. MR 93f:53063
  • 8. R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182-1238. MR 58:18161
  • 9. B. Süssmann, Curve shorting and the Banchoff-Pohl inequality on surfaces of nonpositive curvature, Preprint (1996).
  • 10. E. Teufel, A generalization of the isoperimetric inequality in the hyperbolic plane, Arch. Math. 57 (1991), no. 5, 508-513. MR 92j:52015
  • 11. -, Isoperimetric inequalities for closed curves in spaces of constant curvature, Results Math. 22 (1992), 622-630. MR 93h:53073
  • 12. -, On integral geometry in Riemannian spaces, Abh. Math. Sem. Univ. Hamburg 63 (1993), no. 2, 17-27. MR 94f:53127
  • 13. J. L. Weiner, A generalization of the isoperimetric inequality on the $2$-sphere, Indiana Univ. Math. Jour. 24 (1974), 243-248. MR 52:1584
  • 14. -, Isoperimetric inequalities for immersed closed spherical curves, Proc. Amer. Math. Soc. 120 (1994), no. 2, 501-506. MR 94d:53003
  • 15. S. T. Yau, Isoperimetric constants and the first eigenvalue of a compact manifold, Ann. Sci. Ec. Norm. Super., Paris (4) 8 (1975), 487-507. MR 53:1478
  • 16. W. P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. MR 91e:46046

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C42, 53A04, 53C65

Retrieve articles in all journals with MSC (1991): 53C42, 53A04, 53C65


Additional Information

Ralph Howard
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Email: howard@math.sc.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04336-6
Keywords: Isoperimetric inequalities, Sobolev inequalities, Banchoff-Pohl inequality
Received by editor(s): June 21, 1996
Received by editor(s) in revised form: February 6, 1997
Communicated by: Christopher Croke
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society