Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cohomology of polynomials
under an irrational rotation


Authors: Lawrence W. Baggett, Herbert A. Medina and Kathy D. Merrill
Journal: Proc. Amer. Math. Soc. 126 (1998), 2909-2918
MSC (1991): Primary 28D05, 11K38
DOI: https://doi.org/10.1090/S0002-9939-98-04424-4
MathSciNet review: 1459104
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new description of cohomology of functions under an irrational rotation is given in terms of symmetry properties of the functions on subintervals of $[0,1].$ This description yields a method for passing information about the cohomology classes for a given irrational to the cohomology classes for an equivalent irrational.


References [Enhancements On Off] (What's this?)

  • [A] H. Anzai, Ergodic skew product transformations on the torus, Osaka J. Math. 3 (1951), 83-99. MR 12:719d
  • [BMM] L. Baggett, H. A. Medina, and K. D. Merrill, On functions that are trivial cocycles for a set of irrationals, II, Proc. Amer. Math. Soc. 124 (1996), 89-93. MR 96d:28014
  • [BM] L. Baggett and K. D. Merrill, Representations of the Mautner group and cocycles of an irrational rotation, Michigan Math. J. 33 (1986), 221-229. MR 87h:22011
  • [GLL] P. Gabriel, M. Lema\'{n}czyk, and P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mémoire SMF no. 47 119(3) ( 1991). MR 93b:28042
  • [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 1962. MR 81i:10002
  • [Med] H. A. Medina, Spectral Types of Unitary Operators Arising from Irrational Rotations on the Circle Group, Michigan Math. J. 41(1) (1994), 39-49. MR 95a:28014
  • [Mer] K. D. Merrill, Cohomology of step functions under irrational rotations, Israel J. Math 52 (1985), 320-340. MR 88b:39009
  • [P] K. Petersen, On a series of cosecants related to a problem in ergodic theory, Compos. Math. 26 ( 1973), 313-317. MR 48:4273
  • [R] A. Ramsay, Nontransitive quasiorbits in Mackey's analysis of group extensions, Acta Math. 137 ( 1976), 17-48. MR 57:524
  • [V] W. A. Veech, Strict ergodicity in zero-dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Am. Math. Soc. 140 ( 1969), 1-33. MR 39:1410

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 28D05, 11K38

Retrieve articles in all journals with MSC (1991): 28D05, 11K38


Additional Information

Lawrence W. Baggett
Affiliation: Department of Mathematics, University of Colorado, Boulder, Colorado 80309
Email: baggett@euclid.colorado.edu

Herbert A. Medina
Affiliation: Department of Mathematics, Loyola Marymount University, Los Angeles, California 90045
Email: hmedina@lmumail.lmu.edu

Kathy D. Merrill
Affiliation: Department of Mathematics, The Colorado College, Colorado Springs, Colorado 80903
Email: kmerrill@cc.colorado.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04424-4
Received by editor(s): February 26, 1997
Additional Notes: This research was partially supported by NSF grants DMS9201720 and DMS9401180.
Communicated by: David R. Larson
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society