Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Splitting of the direct image
of sheaves under the Frobenius

Author: Rikard Bøgvad
Journal: Proc. Amer. Math. Soc. 126 (1998), 3447-3454
MSC (1991): Primary 14M25; Secondary 14F05, 14L17
MathSciNet review: 1622797
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalisation and a new proof are given of a recent result of J. F. Thomsen (1996), which says that for $L$ a line bundle on a smooth toric variety $X$ over a field of positive characteristic, the direct image $F_*L$ under the Frobenius morphism splits into a direct sum of line bundles. (The special case of projective space is due to Hartshorne.) Our method is to interpret the result in terms of Grothendieck differential operators $\operatorname{Diff}^{(1)} (L,L)\cong\operatorname{Hom}_{O_{X^{(1)}}}(F_*L,F_*L)$, and $T$-linearized sheaves.

References [Enhancements On Off] (What's this?)

  • [A] Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432
  • [B] Rikard Bøgvad, Some results on 𝒟-modules on Borel varieties in characteristic 𝓅>0, J. Algebra 173 (1995), no. 3, 638–667. MR 1327873, 10.1006/jabr.1995.1107
  • [B1] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic 𝐷-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
  • [DG] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • [F] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
  • [HR] Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR 0417172
  • [J] Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
  • [K1] Tamafumi Kaneyama, On equivariant vector bundles on an almost homogeneous variety, Nagoya Math. J. 57 (1975), 65–86. MR 0376680
  • [K2] Tamafumi Kaneyama, Torus-equivariant vector bundles on projective spaces, Nagoya Math. J. 111 (1988), 25–40. MR 961215
  • [MR] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, 10.2307/1971368
  • [M] David Mumford and John Fogarty, Geometric invariant theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982. MR 719371
  • [O] Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
  • [T] J. F. Thomsen, Frobenius direct images of line bundles on toric varieties, Preprint University of Aarhus (1996).
  • [Y] A. Yekutueli, An explicit construction of the Grothendieck residue complex, Astérisque 208 (1992).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14M25, 14F05, 14L17

Retrieve articles in all journals with MSC (1991): 14M25, 14F05, 14L17

Additional Information

Rikard Bøgvad
Affiliation: Department of Mathematics, University of Stockholm, S-106 91 Stockholm, Sweden

Received by editor(s): November 1, 1996
Communicated by: Ron Donagi
Article copyright: © Copyright 1998 American Mathematical Society