Order complexes of noncomplemented lattices are nonevasive

Author:
Dmitry N. Kozlov

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3461-3465

MSC (1991):
Primary 05E99, 06A09, 06B99

MathSciNet review:
1621965

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem: Let be a finite lattice, .

Assume is a set of elements of which includes all complements of and is included in the set of all upper (lower) semicomplements of . Then is nonevasive, in particular collapsible. This generalizes results of several previous papers, where, in different generalities, it has been proved that the mentioned complex is contractible.

**[Ba]**Kenneth Baclawski,*Galois connections and the Leray spectral sequence*, Advances in Math.**25**(1977), no. 3, 191–215. MR**0470035****[BB]**Kenneth Baclawski and Anders Björner,*Fixed points and complements in finite lattices*, J. Combin. Theory Ser. A**30**(1981), no. 3, 335–338. MR**618539**, 10.1016/0097-3165(81)90030-3**[B81]**Anders Björner,*Homotopy type of posets and lattice complementation*, J. Combin. Theory Ser. A**30**(1981), no. 1, 90–100. MR**607041**, 10.1016/0097-3165(81)90042-X**[B94]**A. Björner,*A general homotopy complementation formula*, Discrete Math., to appear, preprint 1994, 7 pages.**[B95]**A. Björner,*Topological methods*, Handbook of combinatorics, Vol. 1, 2, Elsevier, Amsterdam, 1995, pp. 1819–1872. MR**1373690****[BW]**Anders Björner and James W. Walker,*A homotopy complementation formula for partially ordered sets*, European J. Combin.**4**(1983), no. 1, 11–19. MR**694463**, 10.1016/S0195-6698(83)80003-1**[Co]**Marshall M. Cohen,*A course in simple-homotopy theory*, Springer-Verlag, New York-Berlin, 1973. Graduate Texts in Mathematics, Vol. 10. MR**0362320****[Cr]**Henry H. Crapo,*The Möbius function of a lattice*, J. Combinatorial Theory**1**(1966), 126–131. MR**0193018****[KSS]**Jeff Kahn, Michael Saks, and Dean Sturtevant,*A topological approach to evasiveness*, Combinatorica**4**(1984), no. 4, 297–306. MR**779890**, 10.1007/BF02579140**[Mu]**James R. Munkres,*Elements of algebraic topology*, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR**755006****[Qu]**Daniel Quillen,*Higher algebraic 𝐾-theory. I*, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR**0338129****[Se]**Graeme Segal,*Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math.**34**(1968), 105–112. MR**0232393****[St]**Richard P. Stanley,*Enumerative combinatorics. Vol. I*, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR**847717**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
05E99,
06A09,
06B99

Retrieve articles in all journals with MSC (1991): 05E99, 06A09, 06B99

Additional Information

**Dmitry N. Kozlov**

Affiliation:
Department of Mathematics, 2-392, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Address at time of publication:
Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540

Email:
kozlov@math.mit.edu, kozlov@math.kth.se

DOI:
https://doi.org/10.1090/S0002-9939-98-05021-7

Received by editor(s):
February 25, 1997

Communicated by:
Jeffry Kahn

Article copyright:
© Copyright 1998
American Mathematical Society