Order complexes of noncomplemented lattices are nonevasive

Author:
Dmitry N. Kozlov

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3461-3465

MSC (1991):
Primary 05E99, 06A09, 06B99

DOI:
https://doi.org/10.1090/S0002-9939-98-05021-7

MathSciNet review:
1621965

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem: Let be a finite lattice, .

Assume is a set of elements of which includes all complements of and is included in the set of all upper (lower) semicomplements of . Then is nonevasive, in particular collapsible. This generalizes results of several previous papers, where, in different generalities, it has been proved that the mentioned complex is contractible.

**[Ba]**K. Baclawski,*Galois connections and the Leray spectral sequence*, Advances in Math.**25**, (1977), pp. 191-215. MR**57:9805****[BB]**K. Baclawski, A. Björner,*Fixed points and complements in finite lattices*, J. Comb. Theory, Ser. A**30**, (1981), pp. 335-338. MR**82f:06008****[B81]**A. Björner,*Homotopy type of posets and lattice complementation,*J. Comb. Theory, Ser. A**30**, (1981), pp. 90-100. MR**82k:06001****[B94]**A. Björner,*A general homotopy complementation formula*, Discrete Math., to appear, preprint 1994, 7 pages.**[B95]**A. Björner,*Topological Methods,*in ``Handbook of Combinatorics'' (eds. R. Graham, M. Grötschel and L. Lovász), North-Holland, 1995, pp. 1819-1872. MR**96m:52012****[BW]**A. Björner, J.W. Walker,*A homotopy complementation formula for partially ordered sets,*European J. Combin.**4**, (1983), pp. 11-19. MR**84f:06003****[Co]**M.M. Cohen,*A Course in Simple-Homotopy Theory,*Springer, New York, 1973. MR**50:14762****[Cr]**H.H. Crapo,*The Möbius function of a lattice,*J. Comb. Theory**1**, (1966), pp. 126-131. MR**33:1240****[KSS]**J. Kahn, M. Saks and D. Sturtevant,*A topological approach to evasiveness,*Combinatorica**4**, pp. 297-306, 1984. MR**86f:05117****[Mu]**J.R. Munkres,*Elements of Algebraic Topology*, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR**85m:55001****[Qu]**D. Quillen,*Higher algebraic K-theory*I, Lecture Notes in Mathematics**341**, (1973), pp. 85-148, Springer-Verlag. MR**49:2895****[Se]**G. Segal,*Classifying spaces and spectral sequences*, Inst. Hautes Études Sci. Publ. Math. No**34**, (1968), pp. 105-112. MR**38:718****[St]**R.P. Stanley,*Enumerative Combinatorics*, vol. I, Wadsworth, Belmont, CA, 1986. MR**87j:05003**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
05E99,
06A09,
06B99

Retrieve articles in all journals with MSC (1991): 05E99, 06A09, 06B99

Additional Information

**Dmitry N. Kozlov**

Affiliation:
Department of Mathematics, 2-392, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

Address at time of publication:
Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540

Email:
kozlov@math.mit.edu, kozlov@math.kth.se

DOI:
https://doi.org/10.1090/S0002-9939-98-05021-7

Received by editor(s):
February 25, 1997

Communicated by:
Jeffry Kahn

Article copyright:
© Copyright 1998
American Mathematical Society