Structural stability on basins

for numerical methods

Author:
Ming-Chia Li

Journal:
Proc. Amer. Math. Soc. **127** (1999), 289-295

MSC (1991):
Primary 58F10, 58F12, 65L20, 34D30, 34D45

MathSciNet review:
1469420

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that a flow with a hyperbolic compact attracting set is structurally stable on the basin of attraction with respect to numerical methods. The result is a generalized version of earlier results by Garay, Li, Pugh, and Shub. The proof relies heavily on the usual invariant manifold theory elaborated by Hirsch, Pugh, and Shub (1977), and by Robinson (1976).

**1.**Kendall E. Atkinson,*An introduction to numerical analysis*, 2nd ed., John Wiley & Sons, Inc., New York, 1989. MR**1007135****2.**W.-J. Beyn,*On the numerical approximation of phase portraits near stationary points*, SIAM J. Numer. Anal.**24**(1987), no. 5, 1095–1113. MR**909067**, 10.1137/0724072**3.**M. Braun and J. Hershenov,*Periodic solutions of finite difference equations*, Quart. Appl. Math.**35**(1977/78), no. 1, 139–147. MR**0510330****4.**Timo Eirola,*Invariant curves of one-step methods*, BIT**28**(1988), no. 1, 113–122. MR**928439**, 10.1007/BF01934699**5.**Michal Fečkan,*The relation between a flow and its discretization*, Math. Slovaca**42**(1992), no. 1, 123–127. MR**1159497****6.**B. M. Garay,*Discretization and some qualitative properties of ordinary differential equations about equilibria*, Acta Math. Univ. Comenian. (N.S.)**62**(1993), no. 2, 249–275. MR**1270512****7.**-,*Discretization and normal hyperbolicity*, Z. Angew. Math. Mech.**74**(1994), T662-T663.**8.**-,*The discretized flow on domains of attraction: a structural stability result*, (1997), IMA J. Numer. Anal., to appear.**9.**Barnabas M. Garay,*On structural stability of ordinary differential equations with respect to discretization methods*, Numer. Math.**72**(1996), no. 4, 449–479. MR**1376108**, 10.1007/s002110050177**10.**M. W. Hirsch, C. C. Pugh, and M. Shub,*Invariant manifolds*, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR**0501173****11.**A. R. Humphries and A. M. Stuart,*Runge-Kutta methods for dissipative and gradient dynamical systems*, SIAM J. Numer. Anal.**31**(1994), no. 5, 1452–1485. MR**1293524**, 10.1137/0731075**12.**P. E. Kloeden and J. Lorenz,*Stable attracting sets in dynamical systems and in their one-step discretizations*, SIAM J. Numer. Anal.**23**(1986), no. 5, 986–995. MR**859010**, 10.1137/0723066**13.**M.-C. Li,*Structural stability of Morse-Smale gradient-like flows under discretizations*, SIAM J. Mathematical Analysis**28**(1997), 381-388. CMP**97:08****14.**Charles Pugh and Michael Shub,*𝐶^{𝑟} stability of periodic solutions and solution schemes*, Appl. Math. Lett.**1**(1988), no. 3, 281–285. MR**963700**, 10.1016/0893-9659(88)90093-6**15.**Clark Robinson,*The geometry of the structural stability proof using unstable disks*, Bol. Soc. Brasil. Mat.**6**(1975), no. 2, 129–144. MR**0494284****16.**R. Clark Robinson,*Structural stability of 𝐶¹ flows*, Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented to E. C. Zeeman on his fiftieth birthday), Springer, Berlin, 1975, pp. 262–277. Lecture Notes in Math., Vol. 468. MR**0650640****17.**Clark Robinson,*Structural stability of 𝐶¹ diffeomorphisms*, J. Differential Equations**22**(1976), no. 1, 28–73. MR**0474411****18.**Clark Robinson,*Dynamical systems*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. Stability, symbolic dynamics, and chaos. MR**1396532****19.**Michael Shub,*Some remarks on dynamical systems and numerical analysis*, Dynamical systems and partial differential equations (Caracas, 1984), Univ. Simon Bolivar, Caracas, 1986, pp. 69–91. MR**882014**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58F10,
58F12,
65L20,
34D30,
34D45

Retrieve articles in all journals with MSC (1991): 58F10, 58F12, 65L20, 34D30, 34D45

Additional Information

**Ming-Chia Li**

Affiliation:
Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan

Email:
mcli@math.ncue.edu.tw

DOI:
https://doi.org/10.1090/S0002-9939-99-04591-8

Keywords:
Structural stability,
dynamical systems,
hyperbolic attracting set,
basin of attraction,
numerical method,
Euler's method

Received by editor(s):
January 28, 1997

Received by editor(s) in revised form:
May 6, 1997

Communicated by:
Mary Rees

Article copyright:
© Copyright 1999
American Mathematical Society