Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Relative Brauer groups
of discrete valued fields

Authors: Burton Fein and Murray Schacher
Journal: Proc. Amer. Math. Soc. 127 (1999), 677-684
MSC (1991): Primary 12G05; Secondary 12E15
MathSciNet review: 1487365
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a non-trivial finite Galois extension of a field $K$. In this paper we investigate the role that valuation-theoretic properties of $E/K$ play in determining the non-triviality of the relative Brauer group, $\operatorname{Br}(E/K)$, of $E$ over $K$. In particular, we show that when $K$ is finitely generated of transcendence degree 1 over a $p$-adic field $k$ and $q$ is a prime dividing $[E:K]$, then the following conditions are equivalent: (i) the $q$-primary component, $\operatorname{Br}(E/K)_{q}$, is non-trivial, (ii) $\operatorname{Br}(E/K)_{q}$ is infinite, and (iii) there exists a valuation $\pi $ of $E$ trivial on $k$ such that $q$ divides the order of the decomposition group of $E/K$ at $\pi $.

References [Enhancements On Off] (What's this?)

  • [B] K. Brown, Cohomology of groups, Springer-Verlag, New York, Heidelberg, and Berlin, 1982. MR 96a:20072
  • [FKS] B. Fein, W.M. Kantor, and M. Schacher, Relative Brauer groups, II, J. Reine Angew. Math. 328 (1981), 39-57. MR 83a:12018
  • [FSS1] B. Fein, D. Saltman, and M. Schacher, Brauer-Hilbertian fields, Trans. Amer. Math. Soc. 334 (1992), 915-928. MR 93b:12006
  • [FSS2] -, Crossed products over rational function fields, J. Algebra 156 (1993), 454-493. MR 94d:12003
  • [FS1] B. Fein and M. Schacher, A conjecture about relative Brauer groups, in K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (B. Jacob and A. Rosenberg, eds.), Proceedings of the Symposia in Pure Mathematics, Vol. 58, Amer. Math. Soc., Providence, pp. 161-169. MR 96e:12006
  • [FS2] -, Crossed products over algebraic function fields, J. Algebra 171 (1995), 531-540. MR 96b:12003
  • [Hw] Y. S. Hwang, The corestriction of valued division algebras over Henselian fields.II, Pacific J. Math. 170 (1995), 83-103. MR 96j:12005b
  • [JW] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179. MR 91d:12006
  • [La] S. Lang, Algebraic Number Theory, Addison Wesley, Reading, 1968.
  • [Li] S. Lichtenbaum, Duality theorems for curves over $p$-adic fields, Invent. Math. 7 (1969), 120-136. MR 39:4158
  • [M] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Mathematics, Vol. 1284, Springer-Verlag, Berlin/Heidelberg/New York, 1987. MR 91a:12007
  • [Pi] R. Pierce, Associative Algebras, Springer-Verlag, New York, 1982. MR 84c:16001
  • [Po] F. Pop, Galoissche Kennzeichnung $p$-adisch abgeschlossener Körper, J. reine angewandte Mathematik 392 (1988), 145-175. MR 89k:12014
  • [R] P. Roquette, Analytic theory of elliptic functions over local fields, Vandenhoeck and Ruprecht, Göttingen, 1970. MR 41:5376
  • [Sa] S. Saito, Class field theory for curves over local fields, J. Number Theory 21 (1985), 44-80. MR 87g:11075
  • [Se] J.-P. Serre, Corps Locaux, Hermann, Paris, 1962. MR 27:133
  • [T] J. Tate, Global class field theory, Algebraic Number Theory, J.W.S. Cassels and A. Fröhlich, eds., Thompson, Washington, D.C., 1967, pp. 162-203. MR 36:3749
  • [W] E. Weiss, Algebraic Number Theory, Mc-Graw Hill, New York, 1963. MR 28:3021

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 12G05, 12E15

Retrieve articles in all journals with MSC (1991): 12G05, 12E15

Additional Information

Burton Fein
Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331

Murray Schacher
Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90024

Keywords: Brauer group, discrete valued field
Received by editor(s): June 23, 1997
Additional Notes: The authors are grateful for support under NSA Grants MDA904-95-H-1054 and MDA904-95-H-1022, respectively.
Communicated by: Ken Goodearl
Article copyright: © Copyright 1999 American Mathematical Society