Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonuniqueness of phase transitions
near the Maxwell line


Author: S. Benzoni-Gavage
Journal: Proc. Amer. Math. Soc. 127 (1999), 1183-1190
MSC (1991): Primary 76T05, 35M10, 34C37; Secondary 35L67, 58F14
DOI: https://doi.org/10.1090/S0002-9939-99-04719-X
MathSciNet review: 1485459
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the description of propagating phase boundaries in a van der Waals fluid by means of viscocapillary profiles, which are viewed as heteroclinic orbits connecting nonhyperbolic fixed points of a five dimensional dynamical system. A bifurcation analysis enables us to show that, for small viscosities, some distinct propagating phase boundaries share the same metastable state on one side of the front.


References [Enhancements On Off] (What's this?)

  • 1. S. Benzoni-Gavage, Stability of multidimensional phase transitions. Nonlinear Analysis T.M.A., 31, no. 1/2 (1998), pp. 243-263. CMP 98:06
  • 2. H. Fan & M. Slemrod, The Riemann problem for systems of conservation laws of mixed type. IMA Vol. Math. Appl., 52 (1993), pp. 61-91. MR 94h:35152
  • 3. H. Freistühler, The Persistence of Ideal Shock Waves. Appl. Math. Lett., 7 no 6 (1994), pp. 7-11. MR 96c:35114
  • 4. M. Grinfeld, Dynamic phase transitions: Existence of ``cavitation waves''. Proc. Roy. Soc. Edinburgh Sect. A, 107 (1987), pp. 153-163. MR 88k:35123
  • 5. D. Serre, Systems of conservation laws. Cambridge University Press, to appear.
  • 6. M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81 (1983), pp. 301-315. MR 84a:76030
  • 7. M. Shearer, Admissibility criteria for shock wave solutions of a system of conservation laws of mixed type. Proc. Roy. Soc. Edinburgh 93 A (1983), pp. 233-244. MR 84c:35075
  • 8. M. Shearer, Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type. Arch. Rational Mech. Anal. 93 (1986), pp. 45-59. MR 87h:35207

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 76T05, 35M10, 34C37, 35L67, 58F14

Retrieve articles in all journals with MSC (1991): 76T05, 35M10, 34C37, 35L67, 58F14


Additional Information

S. Benzoni-Gavage
Affiliation: CNRS-ENS Lyon, UMR 128, 46, allée d’Italie, F-69364 Lyon Cedex 07, France
Email: benzoni@umpa.ens-lyon.fr

DOI: https://doi.org/10.1090/S0002-9939-99-04719-X
Keywords: Phase transitions, profiles, heteroclinic orbits
Received by editor(s): July 16, 1997
Communicated by: Jeffrey Rauch
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society