On -cobordisms of spherical space forms

Authors:
Slawomir Kwasik and Reinhard Schultz

Journal:
Proc. Amer. Math. Soc. **127** (1999), 1525-1532

MSC (1991):
Primary 57R80, 57S25

Published electronically:
January 29, 1999

MathSciNet review:
1473672

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a manifold of dimension at least 4 whose universal covering is homeomorphic to a sphere, the main result states that a compact manifold is isomorphic to a cylinder if and only if is homotopy equivalent to this cylinder and the boundary is isomorphic to two copies of ; this holds in the smooth, PL and topological categories. The result yields a classification of smooth, finite group actions on homotopy spheres (in dimensions ) with exactly two singular points.

**[Ba]**D. Barden,*On the structure and classification of differential manifolds*, Ph. D. Thesis, Cambridge University, 1965.**[BQ]**William Browder and Frank Quinn,*A surgery theory for 𝐺-manifolds and stratified sets*, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 27–36. MR**0375348****[CS1]**S. Cappell and J. Shaneson,*On -dimensional -cobordisms*, J. Diff. Geom. 22 (1985), 97-115. MR**87j:57034a****[CS2]**Sylvain E. Cappell and Julius L. Shaneson,*On four-dimensional 𝑠-cobordisms. II*, Comment. Math. Helv.**64**(1989), no. 2, 338–347. MR**997370**, 10.1007/BF02564679**[DM]**J. F. Davis and R. J. Milgram,*A survey of the spherical space form problem*, Mathematical Reports, vol. 2, Harwood Academic Publishers, Chur, 1985. MR**798073****[tD]**T. tom Dieck, ``Transformation Groups and Representation Theory", Lecture Notes in Math. Vol. 766, Springer, Berlin-Heidelberg-New York, 1979.**[Dr]**Andreas W. M. Dress,*Induction and structure theorems for orthogonal representations of finite groups*, Ann. of Math. (2)**102**(1975), no. 2, 291–325. MR**0387392****[H]**Jean-Claude Hausmann,*ℎ-cobordismes entre variétés homéomorphes*, Comment. Math. Helv.**50**(1975), 9–13 (French). MR**0368037****[KS1]**Sławomir Kwasik and Reinhard Schultz,*Desuspension of group actions and the ribbon theorem*, Topology**27**(1988), no. 4, 443–457. MR**976586**, 10.1016/0040-9383(88)90023-7**[KS2]**S. Kwasik and R. Schultz,*On 𝑠-cobordisms of metacyclic prism manifolds*, Invent. Math.**97**(1989), no. 3, 523–552. MR**1005005**, 10.1007/BF01388889**[KS3]**Sławomir Kwasik and Reinhard Schultz,*Vanishing of Whitehead torsion in dimension four*, Topology**31**(1992), no. 4, 735–756. MR**1191376**, 10.1016/0040-9383(92)90005-3**[KS4]**Sławomir Kwasik and Reinhard Schultz,*Fake spherical spaceforms of constant positive scalar curvature*, Comment. Math. Helv.**71**(1996), no. 1, 1–40. MR**1371676**, 10.1007/BF02566407**[KS5]**Sławomir Kwasik and Reinhard Schultz,*Visible surgery, four-dimensional 𝑠-cobordisms and related questions in geometric topology*, 𝐾-Theory**9**(1995), no. 4, 323–352. MR**1351942**, 10.1007/BF00961468**[MS]**D. Cooper, D. D. Long, and A. W. Reid,*Finite foliations and similarity interval exchange maps*, Topology**36**(1997), no. 1, 209–227. MR**1410472**, 10.1016/0040-9383(95)00066-6**[Mi]**J. Milnor,*Whitehead torsion*, Bull. Amer. Math. Soc.**72**(1966), 358–426. MR**0196736**, 10.1090/S0002-9904-1966-11484-2**[O1]**Robert Oliver,*Correction to: “𝑆𝐾₁ for finite group rings. I” [Invent. Math. 57 (1980), no. 2, 183–204; MR 81f:18031]*, Invent. Math.**64**(1981), no. 1, 167–169. MR**621774**, 10.1007/BF01393938**[O2]**Robert Oliver,*𝑆𝐾₁ for finite group rings. III*, Algebraic 𝐾-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 299–337. MR**618310****[Sc]**Reinhard Schultz,*Differentiable group actions on homotopy spheres. II. Ultrasemifree actions*, Trans. Amer. Math. Soc.**268**(1981), no. 2, 255–297. MR**632531**, 10.1090/S0002-9947-1981-0632531-6**[Se]**Marcos Sebastiani,*Sur les actions à deux points fixes de groupes finis sur les sphères*, Comment. Math. Helv.**45**(1970), 405–439 (French). MR**0278337****[Sh]**Julius L. Shaneson,*Non-simply-connected surgery and some results in low dimensional topology*, Comment. Math. Helv.**45**(1970), 333–352. MR**0275444****[TW]**C. B. Thomas and C.T.C. Wall,*On the structure of finite groups with periodic cohomology*, preprint, University of Liverpool, 1979.**[U1]**Fumihiro Ushitaki,*𝑆𝐾₁(𝑍[𝐺]) of finite solvable groups which act linearly and freely on spheres*, Osaka J. Math.**28**(1991), no. 1, 117–127. MR**1096931****[U2]**Fumihiro Ushitaki,*On 𝐺-ℎ-cobordisms between 𝐺-homotopy spheres*, Osaka J. Math.**31**(1994), no. 3, 597–612. MR**1309404****[U3]**Fumihiro Ushitaki,*A generalization of a theorem of Milnor*, Osaka J. Math.**31**(1994), no. 2, 403–415. MR**1296847****[W1]**C. T. C. Wall,*Surgery on compact manifolds*, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. MR**0431216****[W2]**C. T. C. Wall,*Norms of units in group rings*, Proc. London Math. Soc. (3)**29**(1974), 593–632. MR**0376746****[W3]**C. T. C. Wall,*Corrigendum: “Formulae for surgery obstructions” (Topology 15 (1976), no. 3, 189–210)*, Topology**16**(1977), no. 4, 495–496. MR**0488092**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57R80,
57S25

Retrieve articles in all journals with MSC (1991): 57R80, 57S25

Additional Information

**Slawomir Kwasik**

Affiliation:
Department of Mathematics, Tulane University, New Orleans, Louisiana 70118

Email:
kwasik@math.tulane.edu

**Reinhard Schultz**

Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Address at time of publication:
Department of Mathematics, University of California, Riverside, California 92521

Email:
schultz@math.ucr.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-99-04637-7

Received by editor(s):
June 23, 1997

Received by editor(s) in revised form:
September 2, 1997

Published electronically:
January 29, 1999

Additional Notes:
The first author was partially supported by NSF Grant DMS 91-01575 and by a COR grant from Tulane University. The second author was partially supported by NSF grant DMS 91-02711.

Communicated by:
Thomas Goodwillie

Article copyright:
© Copyright 1999
American Mathematical Society