On cobordisms of spherical space forms
Authors:
Slawomir Kwasik and Reinhard Schultz
Journal:
Proc. Amer. Math. Soc. 127 (1999), 15251532
MSC (1991):
Primary 57R80, 57S25
Published electronically:
January 29, 1999
MathSciNet review:
1473672
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Given a manifold of dimension at least 4 whose universal covering is homeomorphic to a sphere, the main result states that a compact manifold is isomorphic to a cylinder if and only if is homotopy equivalent to this cylinder and the boundary is isomorphic to two copies of ; this holds in the smooth, PL and topological categories. The result yields a classification of smooth, finite group actions on homotopy spheres (in dimensions ) with exactly two singular points.
 [Ba]
D. Barden, On the structure and classification of differential manifolds, Ph. D. Thesis, Cambridge University, 1965.
 [BQ]
William
Browder and Frank
Quinn, A surgery theory for 𝐺manifolds and stratified
sets, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973)
Univ. Tokyo Press, Tokyo, 1975, pp. 27–36. MR 0375348
(51 #11543)
 [CS1]
S. Cappell and J. Shaneson, On dimensional cobordisms, J. Diff. Geom. 22 (1985), 97115. MR 87j:57034a
 [CS2]
Sylvain
E. Cappell and Julius
L. Shaneson, On fourdimensional 𝑠cobordisms. II,
Comment. Math. Helv. 64 (1989), no. 2, 338–347.
MR 997370
(90i:57011), http://dx.doi.org/10.1007/BF02564679
 [DM]
J.
F. Davis and R.
J. Milgram, A survey of the spherical space form problem,
Mathematical Reports, vol. 2, Harwood Academic Publishers, Chur, 1985.
MR 798073
(87e:57001)
 [tD]
T. tom Dieck, ``Transformation Groups and Representation Theory", Lecture Notes in Math. Vol. 766, Springer, BerlinHeidelbergNew York, 1979.
 [Dr]
Andreas
W. M. Dress, Induction and structure theorems for orthogonal
representations of finite groups, Ann. of Math. (2)
102 (1975), no. 2, 291–325. MR 0387392
(52 #8235)
 [H]
JeanClaude
Hausmann, ℎcobordismes entre variétés
homéomorphes, Comment. Math. Helv. 50 (1975),
9–13 (French). MR 0368037
(51 #4279)
 [KS1]
Sławomir
Kwasik and Reinhard
Schultz, Desuspension of group actions and the ribbon theorem,
Topology 27 (1988), no. 4, 443–457. MR 976586
(89m:57043), http://dx.doi.org/10.1016/00409383(88)900237
 [KS2]
S.
Kwasik and R.
Schultz, On 𝑠cobordisms of metacyclic prism
manifolds, Invent. Math. 97 (1989), no. 3,
523–552. MR 1005005
(90e:57063), http://dx.doi.org/10.1007/BF01388889
 [KS3]
Sławomir
Kwasik and Reinhard
Schultz, Vanishing of Whitehead torsion in dimension four,
Topology 31 (1992), no. 4, 735–756. MR 1191376
(93j:57013), http://dx.doi.org/10.1016/00409383(92)900053
 [KS4]
Sławomir
Kwasik and Reinhard
Schultz, Fake spherical spaceforms of constant positive scalar
curvature, Comment. Math. Helv. 71 (1996),
no. 1, 1–40. MR 1371676
(97a:53057), http://dx.doi.org/10.1007/BF02566407
 [KS5]
Sławomir
Kwasik and Reinhard
Schultz, Visible surgery, fourdimensional 𝑠cobordisms and
related questions in geometric topology, 𝐾Theory
9 (1995), no. 4, 323–352. MR 1351942
(96g:57038), http://dx.doi.org/10.1007/BF00961468
 [MS]
D.
Cooper, D.
D. Long, and A.
W. Reid, Finite foliations and similarity interval exchange
maps, Topology 36 (1997), no. 1, 209–227.
MR
1410472 (97j:57032), http://dx.doi.org/10.1016/00409383(95)000666
 [Mi]
J.
Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 0196736
(33 #4922), http://dx.doi.org/10.1090/S000299041966114842
 [O1]
Robert
Oliver, Correction to: “𝑆𝐾₁ for finite
group rings. I” [Invent. Math. 57 (1980), no. 2, 183–204;\ MR
81f:18031], Invent. Math. 64 (1981), no. 1,
167–169. MR
621774 (82j:18019), http://dx.doi.org/10.1007/BF01393938
 [O2]
Robert
Oliver, 𝑆𝐾₁ for finite group rings.
III, Algebraic 𝐾theory, Evanston 1980 (Proc. Conf.,
Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math.,
vol. 854, Springer, Berlin, 1981, pp. 299–337. MR 618310
(82m:18006b)
 [Sc]
Reinhard
Schultz, Differentiable group actions on
homotopy spheres. II. Ultrasemifree actions, Trans. Amer. Math. Soc. 268 (1981), no. 2, 255–297. MR 632531
(83a:57055), http://dx.doi.org/10.1090/S00029947198106325316
 [Se]
Marcos
Sebastiani, Sur les actions à deux points fixes de groupes
finis sur les sphères, Comment. Math. Helv. 45
(1970), 405–439 (French). MR 0278337
(43 #4067)
 [Sh]
Julius
L. Shaneson, Nonsimplyconnected surgery and some results in low
dimensional topology, Comment. Math. Helv. 45 (1970),
333–352. MR 0275444
(43 #1200)
 [TW]
C. B. Thomas and C.T.C. Wall, On the structure of finite groups with periodic cohomology, preprint, University of Liverpool, 1979.
 [U1]
Fumihiro
Ushitaki, 𝑆𝐾₁(𝑍[𝐺]) of
finite solvable groups which act linearly and freely on spheres, Osaka
J. Math. 28 (1991), no. 1, 117–127. MR 1096931
(92d:19001)
 [U2]
Fumihiro
Ushitaki, On 𝐺ℎcobordisms between
𝐺homotopy spheres, Osaka J. Math. 31 (1994),
no. 3, 597–612. MR 1309404
(96b:57042)
 [U3]
Fumihiro
Ushitaki, A generalization of a theorem of Milnor, Osaka J.
Math. 31 (1994), no. 2, 403–415. MR 1296847
(95i:19002)
 [W1]
C.
T. C. Wall, Surgery on compact manifolds, Academic Press,
LondonNew York, 1970. London Mathematical Society Monographs, No. 1. MR 0431216
(55 #4217)
 [W2]
C.
T. C. Wall, Norms of units in group rings, Proc. London Math.
Soc. (3) 29 (1974), 593–632. MR 0376746
(51 #12921)
 [W3]
C.
T. C. Wall, Corrigendum: “Formulae for surgery
obstructions” (Topology 15 (1976), no. 3, 189–210),
Topology 16 (1977), no. 4, 495–496. MR 0488092
(58 #7663)
 [Ba]
 D. Barden, On the structure and classification of differential manifolds, Ph. D. Thesis, Cambridge University, 1965.
 [BQ]
 W. Browder and F. Quinn, A surgery theory for manifolds and stratified sets, in ``ManifoldsTokyo, 1973 (Conf. Proc. , Univ. of Tokyo, 1973), University of Tokyo Press, 1975, pp. 2736. MR 51:11543
 [CS1]
 S. Cappell and J. Shaneson, On dimensional cobordisms, J. Diff. Geom. 22 (1985), 97115. MR 87j:57034a
 [CS2]
 , On dimensional cobordisms II, Comment. Math. Helv. 64 (1989), 338347. MR 90i:57011
 [DM]
 J. Davis and R. Milgram, ``A Survey of the Spherical Space Form Problem", Mathematical Reports Vol. 2 Part 2, Harwood Academic Publishers, London, 1985, pp. 223283. MR 87e:57001
 [tD]
 T. tom Dieck, ``Transformation Groups and Representation Theory", Lecture Notes in Math. Vol. 766, Springer, BerlinHeidelbergNew York, 1979.
 [Dr]
 A. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. 102 (1975), 291325. MR 52:8235
 [H]
 J.C. Hausmann, cobordismes entre variétés homéomorphes, Comment. Math. Helv. 50 (1975), 913. MR 51:4279
 [KS1]
 S. Kwasik and R. Schultz, Desuspension of group actions and the Ribbon Theorem, Topology 27 (1988), 443457. MR 89m:57043
 [KS2]
 , On cobordisms of metacyclic prism manifolds, Invent. Math. 97 (1989), 523552. MR 90e:57063
 [KS3]
 , Vanishing of Whitehead torsion in dimension four, Topology 31 (1992), 735756. MR 93j:57013
 [KS4]
 , Fake spherical space forms of constant positive scalar curvature, Comment. Math. Helv. 71 (1996), 140. MR 97a:53057
 [KS5]
 , Visible surgery, dimensional cobordisms and related questions in geometric topology, Theory 9 (1995), 323352. MR 96g:57038
 [MS]
 M. Masuda and R. Schultz, Invariants of AtiyahSinger type, classifications up to finite ambiguity, and equivariant inertia groups, Indiana Univ. Math. J. 45 (1996), 545581. MR 97j:57032
 [Mi]
 J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358426. MR 33:4922
 [O1]
 R. Oliver, for finite group rings I, Invent. Math. 57 (1980), 183204. MR 82j:18019
 [O2]
 , for finite group rings III, in Algebraic Theory, Evanston 1980, Lecture Notes in Mathematics Vol. 854, Springer, BerlinHeidelbergNew York, 1981, pp. 299337. MR 82m:18006b
 [Sc]
 R. Schultz, Differentiable group actions on homotopy spheres II: Ultrasemifree actions, Trans. Amer. Math. Soc. 268 (1981), 255297. MR 83a:57055
 [Se]
 M. Sebastiani, Actions de groupes finis sur les sphères, Comment. Math. Helv. 45 (1970), 405439. MR 43:4067
 [Sh]
 J. Shaneson, Nonsimply connected surgery and some results in lowdimensional topology, Comment. Math. Helv. 45 (1970), 333352. MR 43:1200
 [TW]
 C. B. Thomas and C.T.C. Wall, On the structure of finite groups with periodic cohomology, preprint, University of Liverpool, 1979.
 [U1]
 F. Ushitaki, of finite solvable groups which linearly and freely on spheres, Osaka J. Math. 28 (1991), 117127. MR 92d:19001
 [U2]
 , On  cobordisms between homotopy spheres, Osaka J. Math. 31 (1994), 597612. MR 96b:57042
 [U3]
 , A generalization of theorem of Milnor, Osaka J. Math., to appear. MR 95i:19002
 [W1]
 C.T.C. Wall, ``Surgery on Compact Manifolds", London Math. Soc. Monographs No.1, Academic Press, New York and London, 1970. MR 55:4217
 [W2]
 , Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974), 593632. MR 51:12921
 [W3]
 , Formulæ for surgery obstructions, Topology 15 (1976), 189210. Correction, Topology 16 (1977), 495496. MR 58:7663
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
57R80,
57S25
Retrieve articles in all journals
with MSC (1991):
57R80,
57S25
Additional Information
Slawomir Kwasik
Affiliation:
Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
Email:
kwasik@math.tulane.edu
Reinhard Schultz
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Address at time of publication:
Department of Mathematics, University of California, Riverside, California 92521
Email:
schultz@math.ucr.edu
DOI:
http://dx.doi.org/10.1090/S0002993999046377
PII:
S 00029939(99)046377
Received by editor(s):
June 23, 1997
Received by editor(s) in revised form:
September 2, 1997
Published electronically:
January 29, 1999
Additional Notes:
The first author was partially supported by NSF Grant DMS 9101575 and by a COR grant from Tulane University. The second author was partially supported by NSF grant DMS 9102711.
Communicated by:
Thomas Goodwillie
Article copyright:
© Copyright 1999
American Mathematical Society
