Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Integrability of superharmonic functions, uniform domains, and Hölder domains


Author: Yasuhiro Gotoh
Journal: Proc. Amer. Math. Soc. 127 (1999), 1443-1451
MSC (1991): Primary 46E15
DOI: https://doi.org/10.1090/S0002-9939-99-04670-5
Published electronically: January 29, 1999
MathSciNet review: 1476132
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S^+(D)$ denote the space of all positive superharmonic functions on a domain $D \subset \mathbf R^n$. Lindqvist showed that $\log S^+(D)$ is a bounded subset of $BMO(D)$. Using this, we give a characterization of finitely connected $2$-dimensional uniform domains and remarks on Hölder domains.


References [Enhancements On Off] (What's this?)

  • 1. H. Aikawa, Integrability of superharmonic functions and subharmonic functions, Proc. Amer. Math. Soc., 120 (1994), 109-117. MR 94b:31003
  • 2. F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Anal. Math., 36 (1979), 50-74. MR 81k:30023
  • 3. Y. Gotoh, On global integrability of $BMO$ functions on general domains, to appear in J. Anal. Math.
  • 4. P. Lindqvist, Global integrability and degenerate quasilinear elliptic equations, J. Anal. Math. 61 (1993), 283-292. MR 95b:35062
  • 5. F. -Y. Maeda and N. Suzuki, The integrability of superharmonic functions on Lipschitz domains, Bull. London Math. Soc., 21 (1989), 270-278. MR 90b:31004
  • 6. M. Masumoto, Integrability of superharmonic functions on plane domains, J. London Math. Soc., 45 (1992), 62-78. MR 93f:31002
  • 7. M. Masumoto, Integrability of superharmonic functions on Hölder domains of the plane, Proc. Amer. Math. Soc., 117 (1993), 1083-1088. MR 93e:31001
  • 8. H. M. Reimann and T. Rychener, Funktionen beschränkter mittelerer Oszillation, Lecture Notes in Math. 489, Springer, 1975. MR 58:23564
  • 9. W. Smith and D. Stegenga, Exponential integrability of the quasihyperbolic metric on Hölder Domains, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 16 (1991), 345-360. MR 93b:30016
  • 10. W. Smith and D. Stegenga, Sobolev imbedding and the integrability of harmonic functions on Hölder domains, (Proc. Interna. Conf. Potential Theory, Nagoya 1990), Walter de Gruyter, Berlin, 1992, pp. 303-313. MR 93d:46056
  • 11. D. A. Stegenga and D. C. Ullrich, Superharmonic functions in Hölder domains, Rocky Mountain J. Math. 29 (1995), 1539-1556. MR 97j:31003
  • 12. N. Suzuki, Note on the integrability of superharmonic functions, Proc. Amer. Math. Soc., 118 (1993), 415-417. MR 93g:31007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E15

Retrieve articles in all journals with MSC (1991): 46E15


Additional Information

Yasuhiro Gotoh
Email: gotoh@cc.nda.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-04670-5
Keywords: BMO, quasihyperbolic metric, uniform domain, H\"older domain, superharmonic function, harmonic function
Received by editor(s): May 7, 1997
Received by editor(s) in revised form: August 25, 1997
Published electronically: January 29, 1999
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society