Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Composition operators on Hardy spaces
of a half-plane


Author: Valentin Matache
Journal: Proc. Amer. Math. Soc. 127 (1999), 1483-1491
MSC (1991): Primary 47B38; Secondary 47B10
Published electronically: January 29, 1999
MathSciNet review: 1625773
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider composition operators on Hardy spaces of a half-plane. We mainly study boundedness and compactness. We prove that on these spaces there are no compact composition operators.


References [Enhancements On Off] (What's this?)

  • 1. Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
  • 2. Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • 3. John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • 4. Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
  • 5. Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • 6. Valentin Matache, Composition operators on 𝐻^{𝑝} of the upper half-plane, An. Univ. Timişoara Ser. Ştiinţ. Mat. 27 (1989), no. 1, 63–66. MR 1140524
  • 7. Eric A. Nordgren, Composition operators on Hilbert spaces, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977) Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 37–63. MR 526531
  • 8. Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406
  • 9. A. S. Parsadanyan, Unitary aggregates of operators and their analytic characterization in the space 𝐿₂(𝑎,𝑏), Akad. Nauk Armyan. SSR Dokl. 76 (1983), no. 4, 165–170 (Russian, with Armenian summary). MR 713658
  • 10. S. D. Sharma and R. K. Singh, Composition Operators on Hardy Spaces of the Upper Half-Plane, preprint (1996).
  • 11. R. K. Singh, A relation between composition operators on 𝐻²(𝐷) and 𝐻²(𝑃⁺), Pure Appl. Math. Sci. 1 (1974/75), no. 2, 1–5. MR 0454723
  • 12. R. K. Singh and S. D. Sharma, Composition operators on a functional Hilbert space, Bull. Austral. Math. Soc. 20 (1979), no. 3, 377–384. MR 559752, 10.1017/S0004972700011084
  • 13. R. K. Singh and S. D. Sharma, Noncompact composition operators, Bull. Austral. Math. Soc. 21 (1980), no. 1, 125–130. MR 569092, 10.1017/S0004972700011345

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B38, 47B10

Retrieve articles in all journals with MSC (1991): 47B38, 47B10


Additional Information

Valentin Matache
Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045-2142
Address at time of publication: Department of Mathematics, University of Puerto Rico, P. O. Box 9018, Mayagüez, Puerto Rico 00681-9018
Email: matache@math.ukans.edu, matache@math.upr.clu.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05060-1
Keywords: Composition operator, Hardy space, compact operator
Received by editor(s): September 1, 1997
Published electronically: January 29, 1999
Communicated by: David R. Larson
Article copyright: © Copyright 1999 American Mathematical Society