Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the disjointness problem
for Gaussian automorphisms

Authors: M. Lemanczyk and F. Parreau
Journal: Proc. Amer. Math. Soc. 127 (1999), 2073-2081
MSC (1991): Primary 28D05, 43A05
Published electronically: February 26, 1999
MathSciNet review: 1486742
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $T_{\sigma _1}$, $T_{\sigma _2}$ are two Gaussian automorphisms, where $\sigma _1$ and $\sigma _2$ are concentrated on independent sets, then we have a dichotomy: either they are spectrally disjoint or they have a common factor. As an application, we construct non-rigid automorphisms which are spectrally determined.

References [Enhancements On Off] (What's this?)

  • 1. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433
  • 2. Ciprian Foiaş and Şerban Strătilă, Ensembles de Kronecker dans la théorie ergodique, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A166–A168 (French). MR 0232911
  • 3. Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 0213508
  • 4. Frank Hahn and William Parry, Some characteristic properties of dynamical systems with quasi-discrete spectra, Math. Systems Theory 2 (1968), 179–190. MR 0230877
  • 5. Bernard Host and François Parreau, Sur une notion de pureté pour les mesures, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 9, 409–412 (French, with English summary). MR 934606
  • 6. A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 531–557. MR 922364, 10.1017/S0143385700004193
  • 7. M. Lema\'{n}czyk, J. Sam Lazaro, Spectral analysis of certain compact factors for Gaussian dynamical systems, Isr. J. Math. 98 (1997), 307-328. CMP 97:15
  • 8. M. Lema\'{n}czyk, F. Parreau, J.- P. Thouvenot, Gaussian automorphisms whose ergodic self-joinings are Gaussian, preprint.
  • 9. L.-Ȧ. Lindahl and F. Poulsen (eds.), Thin sets in harmonic analysis, Marcel Dekker, Inc., New York, 1971. Seminars held at Institute Mittag-Leffler, Univ. Stockholm, Stockholm, 1969–1970; Lecture Notes in Pure and Applied Mathematics, Vol. 2. MR 0393993
  • 10. D. Newton, On Gaussian processes with simple spectrum, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 207–209. MR 0200983
  • 11. D. Newton and W. Parry, On a factor automorphism of a normal dynamical system, Ann. Math. Statist 37 (1966), 1528–1533. MR 0206209
  • 12. William Parry, Topics in ergodic theory, Cambridge Tracts in Mathematics, vol. 75, Cambridge University Press, Cambridge-New York, 1981. MR 614142
  • 13. Daniel J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Analyse Math. 35 (1979), 97–122. MR 555301, 10.1007/BF02791063

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 28D05, 43A05

Retrieve articles in all journals with MSC (1991): 28D05, 43A05

Additional Information

M. Lemanczyk
Affiliation: Department of Mathematics and Computer Science, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

F. Parreau
Affiliation: Laboratoire d’Analyse, Géométrie et Applications, URA CNRS 742, Université Paris 13, Av. J.-B. Clément, 93430 Villetaneuse, France

Received by editor(s): April 23, 1997
Received by editor(s) in revised form: October 9, 1997
Published electronically: February 26, 1999
Additional Notes: The first author’s research was partially supported by KBN grant 2 P301 031 07 (1994).
Communicated by: Mary Rees
Article copyright: © Copyright 1999 American Mathematical Society