Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On equivariant slice knots


Authors: Jae Choon Cha and Ki Hyoung Ko
Journal: Proc. Amer. Math. Soc. 127 (1999), 2175-2182
MSC (1991): Primary 57M25, 57M60; Secondary 57Q60
Published electronically: March 1, 1999
MathSciNet review: 1605928
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We suggest a method to detect that two periodic knots are not equivariantly concordant, using surgery on factor links. We construct examples which satisfy all known necessary conditions for equivariant slice knots- Naik's and Choi-Ko-Song's improvements of classical results on Seifert forms and Casson-Gordon invariants of slice knots - but are not equivariantly slice.


References [Enhancements On Off] (What's this?)

  • 1. A. Casson and C. Gordon, Cobordism of classical knots, ``A la recherche de la Topologie perdue", ed. by Guillou and Marin, Progress in Mathematics, Volume 62, 1986. CMP 19:16
  • 2. A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39–53. MR 520521
  • 3. J. Cha. Signatures of links in rational homology spheres, preprint.
  • 4. D. Choi, K. Ko and W. Song, Concordance of periodic knots, preprint.
  • 5. D. Cooper, The universal abelian cover of a link, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 51–66. MR 662427
  • 6. Charles H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187–198. MR 0198462
  • 7. Patrick M. Gilmer, Slice knots in 𝑆³, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 135, 305–322. MR 711523, 10.1093/qmath/34.3.305
  • 8. Patrick Gilmer, Classical knot and link concordance, Comment. Math. Helv. 68 (1993), no. 1, 1–19. MR 1201199, 10.1007/BF02565807
  • 9. P. Gilmer and C. Livingston, The Casson-Gordon invariant and link concordance, Topology 31 (1992), no. 3, 475–492. MR 1174253, 10.1016/0040-9383(92)90045-J
  • 10. Patrick Gilmer and Charles Livingston, Discriminants of Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 1, 127–139. MR 1162937, 10.1017/S0305004100070808
  • 11. J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 0246314
  • 12. John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115–133. MR 0242163
  • 13. Kunio Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162–174. MR 0292060
  • 14. S. Naik, Equivariant concordance of knots in $S^3$, Proceedings of Knots 96 (Edited by Shin'ichi Suzuki), World Scientific Publishing Co., 1997, pp 81-89.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M25, 57M60, 57Q60

Retrieve articles in all journals with MSC (1991): 57M25, 57M60, 57Q60


Additional Information

Jae Choon Cha
Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305–701, Korea
Email: jccha@knot.kaist.ac.kr

Ki Hyoung Ko
Affiliation: Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon, 305–701, Korea
Email: knot@knot.kaist.ac.kr

DOI: http://dx.doi.org/10.1090/S0002-9939-99-04868-6
Keywords: Periodic knot, concordance
Received by editor(s): September 21, 1997
Published electronically: March 1, 1999
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 1999 American Mathematical Society