Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal Bennequin numbers and Kauffman polynomials of positive links


Author: Toshifumi Tanaka
Journal: Proc. Amer. Math. Soc. 127 (1999), 3427-3432
MSC (1991): Primary 57M50, 57M25
DOI: https://doi.org/10.1090/S0002-9939-99-04983-7
Published electronically: May 6, 1999
MathSciNet review: 1616601
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By using results of Yamada and of Yokota, concerning link diagrams and link polynomials, we give some relationships between maximal Bennequin numbers and Kauffman polynomials of positive links.


References [Enhancements On Off] (What's this?)

  • 1. D. Rolfsen, Knots and links, Publish or Perish, Inc. (1976). MR 58:24236
  • 2. L. H. Kauffman, On knots, Ann. of Math. Studies 115. Princeton Univ. Press (1987). MR 89c:57005
  • 3. S. Yamada, The minimal number of Seifert circles equals to the braid index of a link, Invent. Math., Vol. 89, (1987). MR 88f:57015
  • 4. J. Swiatkowski, On the isotopy of Legendrian knots, Ann. Glob. Anal. Geom. Vol. 10, pp. 195-207 (1992). MR 93m:57010
  • 5. Y. Yokota, Polynomial invariants of positive links, Topology, Vol. 31, No. 4, pp. 805-811 (1992). MR 93k:57028
  • 6. L. Rudolph, An obstruction to sliceness via contact geometry and ``classical" gauge theory, Invent. Math, Vol. 199, pp. 155-163 (1995). MR 95k:57013
  • 7. D. Fuchs, S. Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology, Vol. 36, No. 5, pp. 1025-1053 (1997). CMP 97:11
  • 8. S. Tabachnikov, Estimates for the Bennequin number of Legendrian links from state models for knot polynomials, Math. Res. Let. Vol. 4, pp. 143-156 (1997). CMP 97:08

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57M50, 57M25

Retrieve articles in all journals with MSC (1991): 57M50, 57M25


Additional Information

Toshifumi Tanaka
Affiliation: Graduate School of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashiku, Fukuoka, 812-8581 Japan
Email: ttanaka@math.kyushu-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-99-04983-7
Keywords: Positive links, Bennequin number, Kauffman polynomial
Received by editor(s): September 27, 1997
Received by editor(s) in revised form: February 6, 1998
Published electronically: May 6, 1999
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society