Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On biaccessible points in the Julia set
of a Cremer quadratic polynomial


Authors: Dierk Schleicher and Saeed Zakeri
Journal: Proc. Amer. Math. Soc. 128 (2000), 933-937
MSC (1991): Primary 58F23; Secondary 30D40
DOI: https://doi.org/10.1090/S0002-9939-99-05111-4
Published electronically: July 28, 1999
MathSciNet review: 1637424
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the only possible biaccessible points in the Julia set of a Cremer quadratic polynomial are the Cremer fixed point and its preimages. This gives a partial answer to a question posed by C. McMullen on whether such a Julia set can contain any biaccessible point at all.


References [Enhancements On Off] (What's this?)

  • [D] A. Douady, Systemes dynamiques holomorphes, Asterisque, 105-106 (1983) 36-63. MR 85h:58090
  • [K] J. Kiwi, Non-accessible critical points of Cremer polynomials, SUNY at Stony Brook IMS preprint, 1996/2.
  • [Ma] R. Mañe, On a lemma of Fatou, Bol. Soc. Bras. Mat., 24 (1993) 1-12. MR 94g:58188
  • [Mc] C. McMullen, Complex Dynamics and Renormalization, Annals of Math Studies, vol. 135, 1994. MR 96b:58097
  • [Mi] J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, SUNY at Stony Brook IMS preprint, 1990/5.
  • [P1] R. Perez-Marco, Fixed points and circle maps, Acta Math., 179 (1997) 243-294. MR 99a:58130
  • [P2] R. Perez-Marco, Topology of Julia sets and hedgehogs, Prépublications Math. Orsay, 1994.
  • [R] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, 1987. MR 88k:00002
  • [Sø] D. Sørensen, Accumulation theorems of quadratic polynomials, Ergod. Th. and Dynam. Sys., 6 (1996) 555-590. MR 97h:58135
  • [Su] D. Sullivan, Conformal Dynamical Systems, Springer Lecture Notes in Mathematics, 1007 (1983) 725-752. MR 85m:58112
  • [Y] J.C. Yoccoz, Petits Diviseurs en Dimension 1, Asterisque 231, 1995. MR 96m:58214

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F23, 30D40

Retrieve articles in all journals with MSC (1991): 58F23, 30D40


Additional Information

Dierk Schleicher
Affiliation: Fakultät für Mathematik, Technische Universität München, Barer Strasse 23, D-80290 München, Germany
Email: dierk@mathematik.tu-muenchen.de

Saeed Zakeri
Affiliation: Department of Mathematics, SUNY at Stony Brook, New York 11794-3651
Email: zakeri@math.sunysb.edu

DOI: https://doi.org/10.1090/S0002-9939-99-05111-4
Keywords: Julia set, Cremer point, biaccessible point, hedgehog
Received by editor(s): February 19, 1998
Received by editor(s) in revised form: May 9, 1998
Published electronically: July 28, 1999
Communicated by: Michael Handel
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society