Universal lattices of minimal rank
Author:
ByeongKweon Oh
Journal:
Proc. Amer. Math. Soc. 128 (2000), 683689
MSC (1991):
Primary 11E12, 11H06
Published electronically:
July 6, 1999
MathSciNet review:
1654105
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the minimal rank of universal lattices, by which we mean positive definite lattices which represent all positive lattices of rank . It is a well known fact that for . In this paper, we determine and find all universal lattices of rank for .
 [1]
E. Bannai, Positive definite unimodular lattices with trivial automorphism groups, Ohio State Univ., Thesis, 1988.
 [2]
J.
H. Conway and N.
J. A. Sloane, Sphere packings, lattices and groups,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 290, SpringerVerlag, New York, 1988.
With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R.
A. Parker, L. Queen and B. B. Venkov. MR 920369
(89a:11067)
 [3]
J.
H. Conway and N.
J. A. Sloane, Lowdimensional lattices. I. Quadratic forms of small
determinant, Proc. Roy. Soc. London Ser. A 418
(1988), no. 1854, 17–41. MR 953276
(90a:11071)
 [4]
J.
H. Conway and N.
J. A. Sloane, Lowdimensional lattices. V. Integral coordinates for
integral lattices, Proc. Roy. Soc. London Ser. A 426
(1989), no. 1871, 211–232. MR 1030461
(90m:11100)
 [5]
J.H. Conway, W. Schneeberger, A theorem for universal quadratic forms, to appear.
 [6]
B.M. Kim, MH. Kim, S. Raghavan, universal positive definite integral quinary diagonal quadratic forms, Ramanujan J. 1 (1997), 333337. CMP 98:10
 [7]
B.M. Kim, MH. Kim, BK. Oh, universal positive definite integral quinary quadratic forms, Preprint.
 [8]
MyungHwan
Kim and ByeongKweon
Oh, Representations of positive definite senary integral quadratic
forms by a sum of squares, J. Number Theory 63
(1997), no. 1, 89–100. MR 1438651
(98a:11045), http://dx.doi.org/10.1006/jnth.1997.2069
 [9]
MyungHwan
Kim and ByeongKweon
Oh, A lower bound for the number of squares whose sum represents
integral quadratic forms, J. Korean Math. Soc. 33
(1996), no. 3, 651–655. MR 1419759
(97j:11017)
 [10]
C. Ko, On the representation of a sum of squares of linear forms, Quart. J. Math. Oxford 8 (1937), 8198.
 [11]
, On the decomposition of quadratic forms in six variables, Acta Arith. 3 (1939), 6478.
 [12]
J.L. Lagrange, Oeuvres 3 (1869), 189201.
 [13]
O.
T. O’Meara, The integral representations of quadratic forms
over local fields, Amer. J. Math. 80 (1958),
843–878. MR 0098064
(20 #4526)
 [14]
, Introduction to quadratic forms, SpringerVerlag, 1973.
 [15]
L.J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math. Oxford 1 (1930), 276288.
 [16]
S. Ramanujan, On the expression of a number in the form , Proc Cambridge Phil. Soc. 19 (1917), 1121.
 [17]
W.
Plesken, Additively indecomposable positive integral quadratic
forms, J. Number Theory 47 (1994), no. 3,
273–283. MR 1278399
(95c:11045), http://dx.doi.org/10.1006/jnth.1994.1037
 [18]
G.
L. Watson, The classnumber of a positive quadratic form,
Proc. London Math. Soc. (3) 13 (1963), 549–576. MR 0150104
(27 #107)
 [19]
G.
L. Watson, Oneclass genera of positive quadratic forms in at least
five variables, Acta Arith. 26 (1974/75), no. 3,
309–327. MR 0379369
(52 #274)
 [20]
G.
L. Watson, Oneclass genera of positive quadratic forms in nine and
ten variables, Mathematika 25 (1978), no. 1,
57–67. MR
0491499 (58 #10738)
 [21]
Margaret
F. Willerding, Determination of all classes of
positive quaternary quadratic forms which represent all (positive)
integers, Bull. Amer. Math. Soc. 54 (1948), 334–337. MR 0024939
(9,571e), http://dx.doi.org/10.1090/S000299041948089984
 [1]
 E. Bannai, Positive definite unimodular lattices with trivial automorphism groups, Ohio State Univ., Thesis, 1988.
 [2]
 J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, SpringerVerlag, 1988. MR 89a:11067
 [3]
 , Low dimensional lattices. I. Quadratic forms of small determinant, Proc. Royal. Soc. Lond. A. 418 (1988), 1741. MR 90a:11071
 [4]
 , Low dimensional lattices. V. Integral coordinates for integral lattices, Proc. Royal. Soc. Lond. A 426 (1989), 211232. MR 90m:11100
 [5]
 J.H. Conway, W. Schneeberger, A theorem for universal quadratic forms, to appear.
 [6]
 B.M. Kim, MH. Kim, S. Raghavan, universal positive definite integral quinary diagonal quadratic forms, Ramanujan J. 1 (1997), 333337. CMP 98:10
 [7]
 B.M. Kim, MH. Kim, BK. Oh, universal positive definite integral quinary quadratic forms, Preprint.
 [8]
 MH. Kim, BK. Oh, Representations of positive definite senary integralquadratic forms by a sum of squares, J. Number Theory 63 (1997), 89100. MR 98a:11045
 [9]
 , A lower bound for the number of squares whose sum represents integral quadratic forms, J. Korean Math. Soc. 33 (1996), 651655. MR 97j:11017
 [10]
 C. Ko, On the representation of a sum of squares of linear forms, Quart. J. Math. Oxford 8 (1937), 8198.
 [11]
 , On the decomposition of quadratic forms in six variables, Acta Arith. 3 (1939), 6478.
 [12]
 J.L. Lagrange, Oeuvres 3 (1869), 189201.
 [13]
 O.T. O'Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843878. MR 20:4526
 [14]
 , Introduction to quadratic forms, SpringerVerlag, 1973.
 [15]
 L.J. Mordell, A new Waring's problem with squares of linear forms, Quart. J. Math. Oxford 1 (1930), 276288.
 [16]
 S. Ramanujan, On the expression of a number in the form , Proc Cambridge Phil. Soc. 19 (1917), 1121.
 [17]
 W. Plesken, Additively indecomposable positive integral quadratic forms, J. Number Theory 47 (1994), 273283. MR 95c:11045
 [18]
 G.L. Watson, The class number of a positive quadratic form, Proc. London Math. Soc. (3) 13 (1963), 549576. MR 27:107
 [19]
 , Oneclass genera of positive quadratic forms in at least five variables, Acta Arith. 26 (1975), 309327. MR 52:274
 [20]
 , Oneclass genera of positive quadratic forms in nine and ten variables, Math. 25 (1978), 5767. MR 58:10738
 [21]
 M.F. Willerding, Determination of all classes of (positive) quaternary quadratic forms which represent all positive integers, Bull. Amer. Math. Soc. 54 (1948), 334337. MR 9:571e
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
11E12,
11H06
Retrieve articles in all journals
with MSC (1991):
11E12,
11H06
Additional Information
ByeongKweon Oh
Email:
oandhan@math.snu.ac.kr
DOI:
http://dx.doi.org/10.1090/S0002993999052545
PII:
S 00029939(99)052545
Keywords:
$n$universal lattice,
$U_{\mathbb{Z}}(n)$,
root lattice,
additively indecomposable
Received by editor(s):
April 27, 1998
Published electronically:
July 6, 1999
Additional Notes:
The author was partially supported by GARC and BSRI981414
Communicated by:
David E. Rohrlich
Article copyright:
© Copyright 1999
American Mathematical Society
