A global correspondence between CMCsurfaces in and pairs of nonconformal harmonic maps into
Authors:
R. Aiyama, K. Akutagawa, R. Miyaoka and M. Umehara
Journal:
Proc. Amer. Math. Soc. 128 (2000), 939941
MSC (2000):
Primary 53C42; Secondary 53A10
Published electronically:
October 25, 1999
MathSciNet review:
1707134
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show there is a global correspondence between branched constant mean curvature (i.e. CMC) immersions in and pairs of nonconformal harmonic maps into in the same associated family. Furthermore, we give two applications.
 1.
R. Aiyama and K. Akutagawa, Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3sphere, to appear in Tôhoku Math. J.
 2.
A.
I. Bobenko, Surfaces of constant mean curvature and integrable
equations, Uspekhi Mat. Nauk 46 (1991),
no. 4(280), 3–42, 192 (Russian); English transl., Russian Math.
Surveys 46 (1991), no. 4, 1–45. MR 1138951
(93b:53009), http://dx.doi.org/10.1070/RM1991v046n04ABEH002826
 3.
Allan
P. Fordy and John
C. Wood (eds.), Harmonic maps and integrable systems, Aspects
of Mathematics, E23, Friedr. Vieweg & Sohn, Braunschweig, 1994. MR 1264179
(95m:58047)
 4.
N.
J. Hitchin, Harmonic maps from a 2torus to the 3sphere, J.
Differential Geom. 31 (1990), no. 3, 627–710.
MR
1053342 (91d:58050)
 5.
David
A. Hoffman and Robert
Osserman, The Gauss map of surfaces in 𝑅³ and
𝑅⁴, Proc. London Math. Soc. (3) 50
(1985), no. 1, 27–56. MR 765367
(86f:58034), http://dx.doi.org/10.1112/plms/s350.1.27
 6.
Katsuei
Kenmotsu, Weierstrass formula for surfaces of prescribed mean
curvature, Math. Ann. 245 (1979), no. 2,
89–99. MR
552581 (81c:53005b), http://dx.doi.org/10.1007/BF01428799
 7.
H.
Blaine Lawson Jr. and Renato
de Azevedo Tribuzy, On the mean curvature function for compact
surfaces, J. Differential Geom. 16 (1981),
no. 2, 179–183. MR 638784
(83e:53060)
 8.
R. Miyaoka, The splitting and deformations of the generalized Gauss map of compact CMC surfaces, Tôhoku Math. J. 51 (1999), 3553. CMP 99:08
 9.
Walter
Seaman, On surfaces in
𝑅⁴, Proc. Amer. Math. Soc.
94 (1985), no. 3,
467–470. MR
787896 (86m:53011), http://dx.doi.org/10.1090/S00029939198507878960
 10.
M. Umehara and K. Yamada, A deformation of tori with constant mean curvature in to those in other space forms, Trans. Amer. Math. Soc. 330 (1992), 845857. MR 92f92f:53013
 1.
 R. Aiyama and K. Akutagawa, Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3sphere, to appear in Tôhoku Math. J.
 2.
 A.I. Bobenko, Constant mean curvature surfaces and integrable equations, Russian Math. Survey 46 (1991), 145. MR 93b:53009
 3.
 A.I. Bobenko, Surfaces in terms of 2 by 2 matrices: Old and new integrable cases, Harmonic maps and integrable systems (Eds. P. Fordy and J. C. Wood), Vieweg, (1994), 83127. MR 95m:58047
 4.
 N.J. Hitchin, Harmonic maps from a 2torus to the 3sphere, J. Differential Geom. 31 (1990), 627710. MR 91d:58050
 5.
 D.A. Hoffman, Jr. and R. Osserman, On the Gauss map of surfaces in and , Proc. London Math. Soc. 50 (1985), 2756. MR 86f:58034
 6.
 K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 8999. MR 81c:53005b
 7.
 H.B. Lawson, Jr. and R.A. Tribuzy, On the mean curvature function for compact surfaces, J. Differential Geom. 16 (1981), 179183. MR 83e:53060
 8.
 R. Miyaoka, The splitting and deformations of the generalized Gauss map of compact CMC surfaces, Tôhoku Math. J. 51 (1999), 3553. CMP 99:08
 9.
 W. Seaman, On surfaces in , Proc. Amer. Math. Soc. 94 (1985), 467470. MR 86m:53011
 10.
 M. Umehara and K. Yamada, A deformation of tori with constant mean curvature in to those in other space forms, Trans. Amer. Math. Soc. 330 (1992), 845857. MR 92f92f:53013
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
53C42,
53A10
Retrieve articles in all journals
with MSC (2000):
53C42,
53A10
Additional Information
R. Aiyama
Affiliation:
Institute of Mathematics, University of Tsukuba, Ibaraki 3058571, Japan
Email:
aiyama@sakura.cc.tsukuba.ac.jp
K. Akutagawa
Affiliation:
Department of Mathematics, Shizuoka University, Shizuoka 4228529, Japan
Email:
smkacta@ipc.shizuoka.ac.jp
R. Miyaoka
Affiliation:
Department of Mathematics, Sophia University, Tokyo 1028554, Japan
Email:
rmiyaok@hoffman.cc.sophia.ac.jp
M. Umehara
Affiliation:
Department of Mathematics, Hiroshima University, Hiroshima 7398526, Japan
Email:
umehara@math.sci.hiroshimau.ac.jp
DOI:
http://dx.doi.org/10.1090/S000299399905580X
PII:
S 00029939(99)05580X
Received by editor(s):
April 15, 1998
Published electronically:
October 25, 1999
Communicated by:
Christopher Croke
Article copyright:
© Copyright 1999
American Mathematical Society
