A global correspondence between

CMC-surfaces in and pairs

of non-conformal harmonic maps into

Authors:
R. Aiyama, K. Akutagawa, R. Miyaoka and M. Umehara

Journal:
Proc. Amer. Math. Soc. **128** (2000), 939-941

MSC (2000):
Primary 53C42; Secondary 53A10

DOI:
https://doi.org/10.1090/S0002-9939-99-05580-X

Published electronically:
October 25, 1999

MathSciNet review:
1707134

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show there is a global correspondence between branched *constant mean curvature* (i.e. CMC-) immersions in and pairs of non-conformal harmonic maps into in the same associated family. Furthermore, we give two applications.

**1.**R. Aiyama and K. Akutagawa,*Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3-sphere*, to appear in Tôhoku Math. J.**2.**A.I. Bobenko,*Constant mean curvature surfaces and integrable equations*, Russian Math. Survey**46**(1991), 1-45. MR**93b:53009****3.**A.I. Bobenko,*Surfaces in terms of 2 by 2 matrices: Old and new integrable cases*, Harmonic maps and integrable systems (Eds. P. Fordy and J. C. Wood), Vieweg, (1994), 83-127. MR**95m:58047****4.**N.J. Hitchin,*Harmonic maps from a 2-torus to the 3-sphere*, J. Differential Geom.**31**(1990), 627-710. MR**91d:58050****5.**D.A. Hoffman, Jr. and R. Osserman,*On the Gauss map of surfaces in and*, Proc. London Math. Soc.**50**(1985), 27-56. MR**86f:58034****6.**K. Kenmotsu,*Weierstrass formula for surfaces of prescribed mean curvature*, Math. Ann.**245**(1979), 89-99. MR**81c:53005b****7.**H.B. Lawson, Jr. and R.A. Tribuzy,*On the mean curvature function for compact surfaces*, J. Differential Geom.**16**(1981), 179-183. MR**83e:53060****8.**R. Miyaoka,*The splitting and deformations of the generalized Gauss map of compact CMC surfaces*, Tôhoku Math. J.**51**(1999), 35-53. CMP**99:08****9.**W. Seaman,*On surfaces in*, Proc. Amer. Math. Soc.**94**(1985), 467-470. MR**86m:53011****10.**M. Umehara and K. Yamada,*A deformation of tori with constant mean curvature in to those in other space forms*, Trans. Amer. Math. Soc.**330**(1992), 845-857. MR**92f92f:53013**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C42,
53A10

Retrieve articles in all journals with MSC (2000): 53C42, 53A10

Additional Information

**R. Aiyama**

Affiliation:
Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

Email:
aiyama@sakura.cc.tsukuba.ac.jp

**K. Akutagawa**

Affiliation:
Department of Mathematics, Shizuoka University, Shizuoka 422-8529, Japan

Email:
smkacta@ipc.shizuoka.ac.jp

**R. Miyaoka**

Affiliation:
Department of Mathematics, Sophia University, Tokyo 102-8554, Japan

Email:
r-miyaok@hoffman.cc.sophia.ac.jp

**M. Umehara**

Affiliation:
Department of Mathematics, Hiroshima University, Hiroshima 739-8526, Japan

Email:
umehara@math.sci.hiroshima-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-99-05580-X

Received by editor(s):
April 15, 1998

Published electronically:
October 25, 1999

Communicated by:
Christopher Croke

Article copyright:
© Copyright 1999
American Mathematical Society