Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A characterization of Möbius transformations


Author: Roland Höfer
Journal: Proc. Amer. Math. Soc. 128 (2000), 1197-1201
MSC (1991): Primary 51B10; Secondary 51M04, 51M09
DOI: https://doi.org/10.1090/S0002-9939-99-05203-X
Published electronically: August 3, 1999
MathSciNet review: 1646191
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $n\ge 2$ be an integer and let $\mathcal{D}$ be a domain of $\mathbb{R}^n$. Let $f:\mathcal{D}\to\mathbb{R}^n$ be an injective mapping which takes hyperspheres whose interior is contained in $\mathcal{D}$ to hyperspheres in $\mathbb{R}^n$. Then $f$ is the restriction of a Möbius transformation.


References [Enhancements On Off] (What's this?)

  • 1. A. D. Alexandrov. Seminar report. Uspekhi Mat. Nauk, 37(3):187, 1950.
  • 2. A. D. Alexandrov. On the axioms of relativity theory. Vestnik Leningrad Univ. Math., 19:5-28, 1976.
  • 3. W. Benz. Characterizations of geometrical mappings under mild hypotheses: Über ein modernes Forschungsgebiet der Geometrie. Hamb. Beitr. Wiss.gesch., 15:393-409, 1994.
  • 4. Walter Benz, Real geometries, Bibliographisches Institut, Mannheim, 1994. MR 1290992
  • 5. C. Carathéodory. The most general transformations of plane regions which transform circles into circles. Bull. Am. Math. Soc., 43:573-579, 1937.
  • 6. Thomas E. Cecil, Lie sphere geometry, Universitext, Springer-Verlag, New York, 1992. With applications to submanifolds. MR 1219311
  • 7. Iulian Popovici and Dan Constantin Rădulescu, Sur les bases de la géométrie conforme minkowskienne, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 4, 341–344 (French, with English summary). MR 679748
    J. A. Lester, A physical characterization of conformal transformations of Minkowski spacetime, Combinatorics ’81 (Rome, 1981) Ann. Discrete Math., vol. 18, North-Holland, Amsterdam-New York, 1983, pp. 567–574. MR 695841
  • 8. June A. Lester, Distance preserving transformations, Handbook of incidence geometry, North-Holland, Amsterdam, 1995, pp. 921–944. MR 1360731, https://doi.org/10.1016/B978-044488355-1/50018-9
  • 9. Iulian Popovici and Dan Constantin Rădulescu, Characterizing the conformality in a Minkowski space, Ann. Inst. H. Poincaré Sect. A (N.S.) 35 (1981), no. 2, 131–148. MR 637239

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 51B10, 51M04, 51M09

Retrieve articles in all journals with MSC (1991): 51B10, 51M04, 51M09


Additional Information

Roland Höfer
Affiliation: Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany
Email: hoefer@math.uni-hamburg.de

DOI: https://doi.org/10.1090/S0002-9939-99-05203-X
Keywords: M{\"o}bius transformation, Lie transformation, mappings preserving hyperspheres, Alexandrov's theorem for domains
Received by editor(s): June 4, 1998
Published electronically: August 3, 1999
Communicated by: Christopher Croke
Article copyright: © Copyright 2000 American Mathematical Society