Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the complexity of description of representations of $*$-algebras generated by idempotents


Authors: Stanislav Krugliak and Yurii Samoilenko
Journal: Proc. Amer. Math. Soc. 128 (2000), 1655-1664
MSC (2000): Primary 46K10, 46L05; Secondary 16G60
DOI: https://doi.org/10.1090/S0002-9939-00-05100-5
Published electronically: February 16, 2000
MathSciNet review: 1636978
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In this paper, we introduce a quasiorder $\succ$ (majorization) on $*$-algebras with respect to the complexity of description of their representations. We show that $C^*({\mathcal F}_2) \succ \mathfrak A $ for any finitely generated $*$-algebra $\mathfrak A$ (algebras $\mathfrak B$ such that $\mathfrak B\succ C^*({\mathcal F}_2)$ are called $*$-wild). We show that the $*$-algebra generated by orthogonal projections $p$, $p_1$, $p_2$, ..., $p_n$ ($p_ip_j=0$ for $i\neq j$) is $*$-wild if $n\geq 2$. We also prove that $*$-algebras generated by a pair of idempotents and an orthogonal projection, or by a pair of idempotents $q_1$, $q_2$ ( $q_1q_2=q_2 q_1=0$), etc., are $*$-wild.


References [Enhancements On Off] (What's this?)

  • [1] S. A. Kruglyak and Yu. S. Samoilenko.
    On unitary equivalence of collections of self-adjoint operators.
    Funktsional'nyi Analiz i ego Prilozheniya, 14(1):60-62, 1980.
    Russian. MR 81k:47031
  • [2] S. A. Kruglyak.
    Representations of involutive quivers.
    Deposited in VINITI, 7266-84. 62 pages.
    Russian.
  • [3] S. Kruglyak and A. Piryatinskya.
    On ``wild'' $*$-algebras and the unitary classification of weakly centered operators.
    Preprint ser. of Mittag-Leffler Inst., no. 11, 1995/96.
  • [4] S. Kruglyak and S. Samoilenko.
    Structure theorems for families of idempotents.
    Ukrainskii Matematicheskii Zhurnal, 50(4):523-533, 1988.
    Russian.
  • [5] A. Böttcher, I. Gohberg, Yu. Karlovich, N. Krupnik, S. Roch, B. Silberman, and I. Spitkovsky.
    Banach algebras generated by $n$ idempotents and applications.
    Operator Theory Adv. and Appl., 90:19-54, 1996. MR 97h:46078
  • [6] N. L. Vasilevski.
    $C^*$-algebras generated by orthogonal projections and their applications.
    Reporte Interno # 220, Departamento de Matematicas CINVESTAV del I.P.N. México, 1997. MR 99e:46074
  • [7] V. V. Sergeichuk.
    Unitary and Euclidean representations of a quiver.
    Linear Algebra Appl., 278:37-62, 1998. MR 99g:16020
  • [8] P. Donovan and M. R. Freislich.
    The representation theory of finite graphs and associated algebras.
    Carleton Math. Lect. Notes, 5:1-119, 1973. MR 50:9701
  • [9] P. Gabriel and M. Zisman.
    Calculus of fractions and homotopy theory.
    Springer, Berlin, Heidelberg, New York, 1967. MR 35:1019
  • [10] A. Ya. Khelemskii.
    Banach algebras and polynormed algebras: general theory, representations, homology.
    Nauka, Moscow, 1989.
    Russian. MR 91h:46001
  • [11] A. Yu. Ol'shanskii.
    Infinite simple torsion free Noether group.
    Izvestiya Academii Nauk SSSR. Ser. Mat., 43(6):1328-1393, 1979.
    Russian. MR 81i:20033
  • [12] S. I. Adyan.
    Random walks on free periodic groups.
    Izvestiya Academii Nauk SSSR. Ser. Mat., 46(6):1139-1149, 1982.
    Russian. MR 84m:43001
  • [13] S. A. Kalutskii and Yu. S. Samoilenko.
    Periodic groups are not wild.
    Ukrainskii Matematicheskii Zhurnal, 49(5):729-730, 1997.
    Russian. MR 98h:46081
  • [14] P. Halmos.
    Two subspaces.
    Trans. Amer. Math. Soc., 144:381-189, 1969. MR 40:4746
  • [15] Yu. S. Samoilenko.
    Spectral theory of families of self-adjoint operators.
    Naukova Dumka, Kiev, 1984.
    Russian.
    English translation:
    Spectral theory of families of self-adjoint operators.
    Kluwer Acad. Publ., 1991. MR 92j:47038
  • [16] Yu. N. Bespalov.
    Collections of orthogonal projections satisfying relations.
    Ukrainskii Matematicheskii Zhurnal, 44(3):309-317, 1992.
    Russian.
  • [17] D. Z. Dokovic.
    Unitary similarity of projectors.
    Aequationes Math., 42:220-224, 1991.
  • [18] Kh. D. Ikramov.
    On canonical form of projections with respect to a unitary similarity.
    Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 36(1), 1980.
    Russian.
  • [19] Yu. N. Bespalov and Yu. S. Samoilenko.
    Algebraic operators and pairs of self-adjoint operators satisfying an algebraic relation.
    Funktsional'nyi Analiz i ego Prilozheniya, 25(4):72-74, 1991.
    Russian. MR 93d:47044

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46K10, 46L05, 16G60

Retrieve articles in all journals with MSC (2000): 46K10, 46L05, 16G60


Additional Information

Stanislav Krugliak
Affiliation: Institute of Mathematics, Ukrainian National Academy of Sciences, vul. Tereshchinkivs’ka, 3, Kiev, 252001, Ukraine

Yurii Samoilenko
Affiliation: Institute of Mathematics, Ukrainian National Academy of Sciences, vul. Tereshchinkivs’ka, 3, Kiev, 252001, Ukraine
Email: Yurii_Sam@imath.kiev.ua

DOI: https://doi.org/10.1090/S0002-9939-00-05100-5
Keywords: Involutive algebras, idempotents, orthogonal projections, $*$-representations, irreducible representations, majorizing of representations, $*$-wildness
Received by editor(s): February 5, 1997
Received by editor(s) in revised form: May 17, 1998
Published electronically: February 16, 2000
Additional Notes: This work has been supported in part by the Ukrainian Committee for Fundamental Studies and by CRDF grant no. UM1-311
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society