Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Linear independence and divided derivatives of a Drinfeld module II


Authors: W. Dale Brownawell and Laurent Denis
Journal: Proc. Amer. Math. Soc. 128 (2000), 1581-1593
MSC (2000): Primary 11J93, 11G09
DOI: https://doi.org/10.1090/S0002-9939-00-05633-1
Published electronically: February 25, 2000
MathSciNet review: 1709742
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

In this note we extend our previous results on the linear independence of values of the divided derivatives of exponential and quasi-periodic functions related to a Drinfeld module to divided derivatives of values of identity and quasi-periodic functions evaluated at the logarithm of an algebraic value. The change in point of view enables us to deal smoothly with divided derivatives of arbitrary order. Moreover we treat a full complement of quasi-periodic functions corresponding to a basis of de Rham cohomology.


References [Enhancements On Off] (What's this?)

  • 1. G.W. Anderson, $t$-Motives, Duke Math. J. 53(1986), 457-502. MR 87j:11042
  • 2. W.D. Brownawell, Drinfeld exponential and quasi-periodic functions, in Advances in Number Theory, F.Q. Gouvêa and N. Yui, eds., Oxford University Press, Oxford, 1993, 341-365. MR 97c:11063
  • 3. -, Linear independence and divided derivatives of a Drinfeld module I, in Number Theory in Progress, Volume I: Diophantine Problems and Polynomials, K. Györy, H. Iwaniec, J. Urbanowicz, eds., Walter de Gruyter, Berlin, 1999, 47-61. CMP 99:14
  • 4. W.D. Brownawell and R. Tubbs, Zero estimates for $t$-modules, available via anonymous ftp from ftp.math.psu.edu/pub/wdb/papers/zero.estimates.ps
  • 5. L. Denis, Dérivées d'un module de Drinfeld et transcendance, Duke Math. J. 80(1995), 1-13. MR 96h:11055
  • 6. -, Lemmes de multiplicité et $T$-modules, Michigan Math. J. 43(1996), 67-79. MR 97a:11089
  • 7. E.-U. Gekeler, De Rham isomorphism for Drinfeld modules, J. für die reine und angew. Math. 401(1989), 188-208. MR 90g:11070
  • 8. S. Lang, Algebra, 3rd edition, Addison-Wesley, Reading, MA, 1993. MR 86j:00003 (review of 2nd edition)
  • 9. J. Yu, A six exponentials theorem in finite characteristic, Math. Ann. 272(1985), 91-98. MR 87c:11060b
  • 10. -, Analytic homomorphisms into Drinfeld modules, Annals of Math.(2) 145(1997), 215-233. MR 98c:11054

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11J93, 11G09

Retrieve articles in all journals with MSC (2000): 11J93, 11G09


Additional Information

W. Dale Brownawell
Affiliation: Department of Mathematics, Penn State University, University Park, Pennsylvania 16802
Email: wdb@math.psu.edu

Laurent Denis
Affiliation: U.F.R. de Mathématiques Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
Email: ladenis@ccr.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05633-1
Keywords: Drinfeld modules, transcendence, linear independence, divided derivatives
Received by editor(s): May 13, 1998
Published electronically: February 25, 2000
Additional Notes: The first author was supported in part by an NSF Grant.
Dedicated: This paper is dedicated to the memory of Bernard Dwork
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society