Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On conditions for polyconvexity

Author: Jan Kristensen
Journal: Proc. Amer. Math. Soc. 128 (2000), 1793-1797
MSC (1991): Primary 49J10, 49J45
Published electronically: October 29, 1999
MathSciNet review: 1670399
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a smooth function $f: \mathbb R^{2\times 2} \to \mathbb R$, which is not polyconvex and which has the property that its restriction to any ball $B \subset \mathbb R^{2\times 2}$ of radius one can be extended to a smooth polyconvex function $f_{B}: \mathbb R^{2\times 2} \to \mathbb R$. In particular, it implies that there exists no `local condition' which is necessary and sufficient for polyconvexity of functions $g: {\mathbb R}^{n \times m} \to \mathbb R$, where $n$, $m \geq 2$. We also briefly discuss connections with quasiconvexity.

References [Enhancements On Off] (What's this?)

  • 1. Jean-Jacques Alibert and Bernard Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Rational Mech. Anal. 117 (1992), no. 2, 155–166. MR 1145109, 10.1007/BF00387763
  • 2. G. Aubert, On a counterexample of a rank 1 convex function which is not polyconvex in the case 𝑁=2, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), no. 3-4, 237–240. MR 906209, 10.1017/S0308210500018382
  • 3. John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 0475169
  • 4. Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890
  • 5. J. Kristensen. On the non-locality of quasiconvexity. I.H.P. Analyse Non Linéaire, to appear.
  • 6. J. Kristensen. On quasiconvex envelopes of locally bounded functions. Preprint 1996.
  • 7. Tadeusz Iwaniec and Adam Lutoborski, Polyconvex functionals for nearly conformal deformations, SIAM J. Math. Anal. 27 (1996), no. 3, 609–619. MR 1382824, 10.1137/0527033
  • 8. Paolo Marcellini, Quasiconvex quadratic forms in two dimensions, Appl. Math. Optim. 11 (1984), no. 2, 183–189. MR 743926, 10.1007/BF01442177
  • 9. Charles B. Morrey Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53. MR 0054865
  • 10. S. Müller. Variational models for microstructure and phase transitions. Lectures at the C.I.M.E. summer school `Calculus of variations and geometric evolution problems', Cetraro 1996.
  • 11. D. Serre, Formes quadratiques et calcul des variations, J. Math. Pures Appl. (9) 62 (1983), no. 2, 177–196 (French, with English summary). MR 713395
  • 12. Vladimír Šverák, Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London Ser. A 433 (1991), no. 1889, 723–725. MR 1116970, 10.1098/rspa.1991.0073
  • 13. Vladimír Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 185–189. MR 1149994, 10.1017/S0308210500015080
  • 14. Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
  • 15. F.J. Terpstra. Die darstellung der biquadratischen formen als summen von quadraten mit anwendung auf die variationsrechnung. Math. Ann. 116: 166-80, 1938.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 49J10, 49J45

Retrieve articles in all journals with MSC (1991): 49J10, 49J45

Additional Information

Jan Kristensen
Affiliation: Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, United Kingdom

Keywords: Polyconvexity, quasiconvexity, rank-$1$ convexity
Received by editor(s): July 29, 1998
Published electronically: October 29, 1999
Additional Notes: Supported by the Danish Natural Science Research Council through grant no. 9501304.
Communicated by: Steven R. Bell
Article copyright: © Copyright 2000 American Mathematical Society