Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A topological property of integrable systems

Author: J. C. Álvarez Paiva
Journal: Proc. Amer. Math. Soc. 128 (2000), 2507-2508
MSC (2000): Primary 37J35
Published electronically: April 7, 2000
MathSciNet review: 1756086
Full-text PDF

Abstract | References | Similar Articles | Additional Information


If we are given $n$ real-valued smooth functions on $\mathbb{R}^{2n}$ which are in involution, then, under some mild hypotheses, the subset of $\mathbb{R}^{2n}$ where these functions are linearly independent is not simply connected.

References [Enhancements On Off] (What's this?)

  • 1. V.I. Arnold, ``Mathematical Methods of Classical Mechanics", Springer-Verlag, New York, 1978. MR 57:14033b
  • 2. C. Ehreshmann and G. Reeb, Sur les champs d'éléments de contact de dimension $p$complètement intégrables dans une variété continuement différentiable $V_{n}$, Comptes rendus Acad. Sci. 218 (1944), 955-957. MR 7:327g
  • 3. C. Viterbo, A new obstruction to embedding Lagrangian tori, Inventiones Mathematicae 100 (1990), 301-320. MR 91d:58085

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37J35

Retrieve articles in all journals with MSC (2000): 37J35

Additional Information

J. C. Álvarez Paiva
Affiliation: Université Catholique de Louvain, Institut de Mathématique Pure et Appl., Chemin du Cyclotron 2, B–1348 Louvain–la–Neuve, Belgium

Keywords: Integrable systems, Maslov index, Lagrangian submanifold
Received by editor(s): September 24, 1998
Published electronically: April 7, 2000
Communicated by: Christopher Croke
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society