Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Tilting up iterated tilted algebras


Authors: Ibrahim Assem, Dieter Happel and Sonia Trepode
Journal: Proc. Amer. Math. Soc. 128 (2000), 2223-2232
MSC (2000): Primary 16G60, 16G20
Published electronically: November 29, 1999
MathSciNet review: 1653413
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, if $A$ is a representation-finite iterated tilted algebra of euclidean type $Q$, then there exist a sequence of algebras $A=A_{0},A_{1},A_{2},\dots,\linebreak A_{m}$, and a sequence of modules $T^{(i)}_{A_{i}}$, where $0\leq i<m$, such that each $T^{(i)}_{A_{i}}$ is an APR-tilting $A_{i}$-module, or an APR-cotilting $A_{i}$-module, $\operatorname{End} T^{(i)}_{A_{i}}=A_{i+1}$ and $A_{m}$ is tilted representation-finite.


References [Enhancements On Off] (What's this?)

  • 1. Ibrahim Assem, Tilting theory—an introduction, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 127–180. MR 1171230
  • 2. Ibrahim Assem and Dieter Happel, Generalized tilted algebras of type 𝐴_{𝑛}, Comm. Algebra 9 (1981), no. 20, 2101–2125. MR 640613, 10.1080/00927878108822697
  • 3. Ibrahim Assem and Andrzej Skowroński, Iterated tilted algebras of type 𝐴_{𝑛}, Math. Z. 195 (1987), no. 2, 269–290. MR 892057, 10.1007/BF01166463
  • 4. Assem, I. and Zhang, Y., Endomorphism algebras of exceptional sequences over path algebras of type $\tilde {\mathbb{A}}_{n}$, Colloq. Math. 77 (1998), 271-292. CMP 98:14
  • 5. Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422
  • 6. Vlastimil Dlab and Claus Michael Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57. MR 0447344
  • 7. Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124
  • 8. Richard, J., A Morita theory for derived categories, vol. 2, 39, J. London Math. Soc., 1989, p. 436-456.
  • 9. Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589
  • 10. Roldán, O., Tilted algebras of types $\tilde {\mathbb{A}}_{n}$, $\tilde {\mathbb{B}}_{n}$, $\tilde {\mathbb{C}}_{n}$ and $\widetilde {{\mathbb{B}}{\mathbb{C}}}_{n}$, Ph. D. Thesis, Carleton University (1983).
  • 11. Andrzej Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), no. 2, 177–199. MR 1016089, 10.1007/BF01443513
  • 12. Trepode, S.E., A conjectura de Roldán para álgebras inclinadas iteradas de tipo euclideano, Ph. D. Thesis, Universidade de São Paulo, 1995.
  • 13. Sonia Elisabet Trepode, Roldán’s conjecture in the case ̃𝐴_{𝑛}, Proceedings of the Third “Dr. Antonio A. R. Monteiro” Congress on Mathematics (Spanish) (Bahía Blanca, 1995) Univ. Nac. del Sur, Bahía Blanca, 1996, pp. 51–68 (Spanish). MR 1403804

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16G60, 16G20

Retrieve articles in all journals with MSC (2000): 16G60, 16G20


Additional Information

Ibrahim Assem
Affiliation: Département de mathématiques et d’informatique, Faculté des sciences, Université de Sherbrooke, Québec, Canada J1K 2R1
Email: ibrahim.assem@dmi.usherb.ca

Dieter Happel
Affiliation: Fakultät für Mathematik, TU Chemmitz, PSF 964, D-09107 Chemnitz, Federal Republic of Germany
Email: happel@mathematik.tu-chemnitz.de

Sonia Trepode
Affiliation: Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina
Address at time of publication: Instituto de Matemáticas, UNAM, Circuito exterior, Cd. Universitaria, México, 04510 D.F., Mexico
Email: strepode@ mdp.edu.ar, sonia@math.unam.mx

DOI: http://dx.doi.org/10.1090/S0002-9939-99-05230-2
Keywords: Representation-finite iterated tilted algebras of euclidean type, APR-tilting and cotilting modules, derived category
Received by editor(s): December 15, 1997
Received by editor(s) in revised form: September 10, 1998
Published electronically: November 29, 1999
Communicated by: Ken Goodearl
Article copyright: © Copyright 2000 American Mathematical Society