Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Oscillation criteria for delay equations


Authors: M. Kon, Y. G. Sficas and I. P. Stavroulakis
Journal: Proc. Amer. Math. Soc. 128 (2000), 2989-2997
MSC (1991): Primary 34K15; Secondary 34C10
DOI: https://doi.org/10.1090/S0002-9939-00-05530-1
Published electronically: April 28, 2000
MathSciNet review: 1694869
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

This paper is concerned with the oscillatory behavior of first-order delay differential equations of the form

$\displaystyle x^{\prime}(t)+p(t)x({\tau}(t))=0, \quad t\geq t_{0},$     (1)

where $p, {\tau} \in C([t_{0}, \infty), \mathbb{R}^+), \mathbb{R}^+=[0, \infty), \tau (t)$ is non-decreasing, $\tau (t) <t$ for $t \geq t_{0}$ and $\lim_{t{\rightarrow}{\infty}} \tau (t) = \infty$. Let the numbers $k$ and $L$ be defined by

\begin{displaymath}k=\liminf_{t{\rightarrow}{\infty}} \int_{\tau (t)}^{t}p(s)ds ... ... L=\limsup_{t{\rightarrow}{\infty}} \int_{\tau (t)}^{t}p(s)ds. \end{displaymath}

It is proved here that when $L<1$ and $0<k \leq \frac{1}{e}$ all solutions of Eq. (1) oscillate in several cases in which the condition

\begin{displaymath}L>2k+\frac{2}{{\lambda}_{1}}-1 \end{displaymath}

holds, where ${\lambda _1}$ is the smaller root of the equation $\lambda =e^{k \lambda}$.


References [Enhancements On Off] (What's this?)

  • 1. O. Arino, G. Ladas and Y. G. Sficas, On oscillations of some retarded differential equations, SIAM J. Math. Anal. 18 (1987), 64-73. MR 88c:34088
  • 2. J. Chao, On the oscillation of linear differential equations with deviating arguments, Math. in Practice and Theory 1 (1991), 32-40.
  • 3. Q. Chuanxi and G. Ladas, Oscillations of Neutral Differential Equations with Variable Coefficients, Applicable Anal. 32 (1989), 215-228. MR 90m:34142
  • 4. Y. Domshlak, Sturmian Comparison Method in investigation of the behavior of solutions for Differential-Operator Equations, ``Elm", Baku, USSR, 1986 (Russian).
  • 5. Y. Domshlak and I. P. Stavroulakis, Oscillations of first-order delay differential equations in a critical state, University of Ioannina, T. R. $N^{0}$ 257 November 1995, Applicable Anal. 61 (1996), 359-371. MR 99a:34184
  • 6. J. Dzurina, Oscillation of second-order differential equations with mixed argument, J. Math. Anal. Appl. 190 (1995), 821-828. MR 95k:34100
  • 7. Á. Elbert and I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, University of Ioannina, T. R. $N^{0}$ 172 1990, Recent trends in differential equations 163-178, World Sci. Ser. Appl. Anal., 1, World Sci. Publishing Co. (1992). MR 93g:34019
  • 8. Á. Elbert and I. P. Stavroulakis, Oscillation and Non-oscillation Criteria for Delay Differential Equations, University of Ioannina, T. R. $N^{0}$228, July 1993, Proc. Amer. Math. Soc. 123 (1995), 1503-1510. MR 95f:34099
  • 9. L. H. Erbe and B. G. Zhang, Oscillation for first order linear differential equations with deviating arguments, Differential Integral Equations 1 (1988), 305-314. MR 89e:34116
  • 10. N. Fukagai and T. Kusano, Oscillation theory of first order functional differential equations with deviating arguments, Ann. Mat. Pura Appl. 136 (1984), 95-117. MR 86b:34135
  • 11. J. Jaros and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29 (1999), 197-207. CMP 99:12
  • 12. R. G. Koplatadze, On zeros of solutions of first order delay differential equations, Proceedings of I. N. Vekua Institute of Applied Mathematics 14 (1983), 128-135 (Russian). MR 85g:34062
  • 13. R. G. Koplatadze and T. A. Chanturija, On oscillatory and monotonic solutions of first order differential equations with deviating arguments, Differential'nye Uravnenija 18 (1982), 1463-1465 (Russian). MR 83k:34069
  • 14. R. G. Koplatadze and G. Kvinikadze, On the oscillation of solutions of first order delay differential inequalities and equations, Georgian Math. J. 1 (1994), 675-685. MR 95j:34103
  • 15. E. Kozakiewicz, Conditions for the absence of positive solutions of a first order differential inequality with a single delay, Archivum Mathematicum, 31 (1995), 291-297. MR 97c:34133
  • 16. M. K. Kwong, Oscillation of first order delay equations, J. Math. Anal. Appl. 156 (1991), 274-286. MR 92b:34082
  • 17. G. Ladas, Sharp conditions for oscillations caused by delays, Applicable Anal. 9 (1979), 93-98. MR 80h:34094
  • 18. G. Ladas, V. Lakshmikantham and L. S. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded arguments, Delay and Functional Differential Equations and their Applications, Academic Press, New York, 1972 219-231. MR 52:8615
  • 19. G. Ladas, Y. G. Sficas and I. P. Stavroulakis, Functional differential inequalities and equations with oscillating coefficients, Trends in Theory and Practice of Nonlinear Differential Equations, (Arlington, Tx. 1982), 277-284, Lecture Notes in Pure and Appl. Math., 90 Marcel Dekker, New York, 1984. MR 85f:34128
  • 20. G. Ladas and I. P. Stavroulakis, On delay differential inequalities of first order, Funkcial. Ekvac. 25 (1982), 105-113. MR 83k:34070
  • 21. B. Li, Oscillations of delay differential equations with variable coefficients, J. Math. Anal. Appl. 192 (1995), 312-321. MR 96c:34152
  • 22. B. Li, Oscillation of first order delay differential equations, Proc. Amer. Math. Soc. 124 (1996), 3729-3737. MR 97b:34078
  • 23. A. D. Myshkis, Linear homogeneous differential equations of first order with deviating arguments, Uspehi Mat. Nauk 5 $N^{0}$2 (36) (1950), 160-162 (Russian).
  • 24. Ch. G. Philos and Y. G. Sficas, An oscillation criterion for first order linear delay differential equations, Canad. Math. Bull. 41 (1998), 207-213. MR 99b:34119
  • 25. J. S. Yu and Z. C. Wang, Some further results on oscillation of neutral differential equations, Bull. Austral. Math. Soc. 46 (1992), 149-157. MR 93e:34099
  • 26. J. S. Yu, Z. C. Wang, B. G. Zhang and X. Z. Qian, Oscillations of differential equations with deviating arguments, PanAmerican Math. J. 2 (1992), 59-78. MR 93e:34100

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34K15, 34C10

Retrieve articles in all journals with MSC (1991): 34K15, 34C10


Additional Information

M. Kon
Affiliation: Department of Mathematics, Boston University, Boston, Massachusetts 02215
Email: mkon@math.bu.edu

Y. G. Sficas
Affiliation: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

I. P. Stavroulakis
Affiliation: Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
Email: ipstav@cc.uoi.gr

DOI: https://doi.org/10.1090/S0002-9939-00-05530-1
Keywords: Oscillation, delay differential equations
Received by editor(s): December 4, 1998
Published electronically: April 28, 2000
Dedicated: Dedicated to Professor V. A. Staikos on the occasion of his 60th birthday
Communicated by: Hal L. Smith
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society