Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Finsler metrics and action potentials

Authors: Renato Iturriaga and Héctor Sánchez-Morgado
Journal: Proc. Amer. Math. Soc. 128 (2000), 3311-3316
MSC (2000): Primary 37J50, 70H30
Published electronically: April 28, 2000
MathSciNet review: 1777579
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We study the behavior of Mañé's action potential $\Phi_k$ associated to a convex superlinear Lagrangian, for $k$ bigger than the critical value $c(L)$. We obtain growth estimates for the action potential as a function of $k$. We also prove that the action potential can be written as $\Phi_k(x,y)=D_F(x,y)+f(y)-f(x)$ where $f$ is a smooth function and $D_F$ is the distance function associated to a Finsler metric.

References [Enhancements On Off] (What's this?)

  • 1. R. Abraham & J. Marsden. Foundations of Mechanics. Addison-Wesley, 1985. MR 81e:58025
  • 2. V.I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in Math., 60. Springer, 1989. MR 96c:70001
  • 3. G. Contreras, J. Delgado, R. Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits II, Bol. Soc. Bras. Mat. Vol. 28, N.2, (1997) 155-196. MR 98i:58093
  • 4. G. Contreras, R. Iturriaga, G. P. Paternain, M. Paternain. Lagrangian graphs, minimizing measures and Mañé's critical values. Geometric and Functional Analysis Vol. 8 (1998) 788-809. MR 99f:58075
  • 5. M. Gutzwiller. Chaos in Classical and Quantum Mechanics New York. Springer Verlag (1990). MR 91m:58099
  • 6. R. Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, International Congress on Dynamical Systems in Montevideo (a tribute to Ricardo Mañé), F. Ledrappier, J. Lewowicz, S. Newhouse eds., Pitman Research Notes in Math. 362 (1996) 120-131. Reprinted in Bol. Soc. Bras. Mat. Vol 28, N. 2, (1997) 141-153. MR 98i:58092
  • 7. J. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207, (1991), no. 2, 169-207. MR 92m:58048
  • 8. R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Math. Princeton. Princeton University Press (1997). MR 97m:49001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37J50, 70H30

Retrieve articles in all journals with MSC (2000): 37J50, 70H30

Additional Information

Renato Iturriaga
Affiliation: CIMAT, A.P. 402, 36000, Guanajuato. Gto., México

Héctor Sánchez-Morgado
Affiliation: Instituto de Matemáticas, UNAM, Ciudad Universitaria, C. P. 04510, México, DF, México

Received by editor(s): December 28, 1998
Published electronically: April 28, 2000
Additional Notes: Both authors were partially supported by CONACYT-México grant # 28489-E
Communicated by: Michael Handel
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society