Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On weighted polynomial approximation with monotone weights


Author: Alexander Borichev
Journal: Proc. Amer. Math. Soc. 128 (2000), 3613-3619
MSC (2000): Primary 41A10, 46E30
DOI: https://doi.org/10.1090/S0002-9939-00-05511-8
Published electronically: June 7, 2000
MathSciNet review: 1694450
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an even weight $W$ monotone on the right half line such that the logarithmic integral of the largest $\log $-convex minorant of $W$ converges and the polynomials are dense in $C(W)$.


References [Enhancements On Off] (What's this?)

  • 1. N. Ahiezer, On the weighted approximation of continuous functions by polynomials on the entire number axis, Uspekhi Mat. Nauk 11 (1956), 3-43; English translation in Amer. Math. Soc. Translations, Ser. 2 , vol. 22, 1962, pp. 95-137. MR 18:802f
  • 2. S. Bernstein, Le problème de l'approximation des fonctions continues sur tout l'axe réel et l'une de ses applications, Bull. Soc. Math. France (52) (1924), 399-410.
  • 3. Louis de Branges, The Bernstein problem, Proc. Amer. Math. Soc. 10 (1959), 825–832. MR 0114080, https://doi.org/10.1090/S0002-9939-1959-0114080-0
  • 4. L. Carleson, On Bernstein's approximation problem, Proc. Amer. Math. Soc. 2 (1951), 953-961. MR 13:632d
  • 5. T. Hall, Sur l'approximation polynômiale des fonctions continues d'une variable réelle, Neuvième Congrès des Mathématiciens Scandinaves (1938), Helsingfors, 1939, 367-369.
  • 6. W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
  • 7. S. Izumi, T. Kawata, Quasi-analytic class and closure of $\{t^{n}\}$ in the interval $(-\infty ,\infty )$, Tôhoku Math. J. (43) (1937), 267-273.
  • 8. P. Koosis, The logarithmic integral, vol. I, Cambridge University Press, Cambridge, 1988, 606 pp. CMP 99:07
  • 9. S. N. Mergelyan, Weighted approximations by polynomials, American Mathematical Society Translations, Ser. 2, Vol. 10, American Mathematical Society, Providence, R.I., 1958, pp. 59–106. MR 0094633
  • 10. Mikhail Sodin and Peter Yuditskii, Another approach to de Branges’ theorem on weighted polynomial approximation, Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), Israel Math. Conf. Proc., vol. 11, Bar-Ilan Univ., Ramat Gan, 1997, pp. 221–227. MR 1476719
  • 11. R. S. Yulmukhametov, Approximation of subharmonic functions, Anal. Math. 11 (1985), no. 3, 257–282 (Russian, with English summary). MR 822590, https://doi.org/10.1007/BF01907421

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 41A10, 46E30

Retrieve articles in all journals with MSC (2000): 41A10, 46E30


Additional Information

Alexander Borichev
Affiliation: Laboratoire de Mathématiques Pures de Bordeaux, UPRESA 5467 CNRS, Université Bordeaux I, 351, cours de la Libération, 33405 Talence, France
Email: borichev@math.u-bordeaux.fr

DOI: https://doi.org/10.1090/S0002-9939-00-05511-8
Keywords: Weighted polynomial approximation, Mergelyan majorant
Received by editor(s): February 20, 1999
Published electronically: June 7, 2000
Communicated by: Albert Baernstein II
Article copyright: © Copyright 2000 American Mathematical Society