Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lamé differential equations and electrostatics


Authors: Dimitar K. Dimitrov and Walter Van Assche
Journal: Proc. Amer. Math. Soc. 128 (2000), 3621-3628
MSC (1991): Primary 34C10, 33C45; Secondary 34B30, 42C05
DOI: https://doi.org/10.1090/S0002-9939-00-05638-0
Published electronically: June 6, 2000
Erratum: Proc. Amer. Math. Soc. 131 (2003), 2303.
MathSciNet review: 1709747
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation \begin{equation*}A(x) y^{\prime\prime} + 2 B(x) y^{\prime} + C(x) y = 0, \end{equation*}where $A(x), B(x)$ and $C(x)$ are polynomials of degree $p+1, p$ and $p-1$, is under discussion. We concentrate on the case when $A(x)$ has only real zeros $a_{j}$ and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients $r_{j}$ in the partial fraction decomposition $B(x)/A(x) = \sum_{j=0}^{p} r_{j}/(x-a_{j})$, we allow the presence of both positive and negative coefficients $r_{j}$. The corresponding electrostatic interpretation of the zeros of the solution $y(x)$ as points of equilibrium in an electrostatic field generated by charges $r_{j}$ at $a_{j}$ is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges.


References [Enhancements On Off] (What's this?)

  • 1. M. Alam, Zeros of Stieltjes and Van Vleck polynomials, Trans. Amer. Math. Soc. 252 (1979), 197-204. MR 81g:30011
  • 2. M. Bôcher, The roots of polynomials that satisfy certain differential equations of the second order, Bull. Amer. Math. Soc. 4 (1897), 256-258.
  • 3. F. A. Grünbaum, Variations on a theme of Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials, J. Comput. Appl. Math. 99 (1998), 189-194. MR 99j:33012
  • 4. F. A. Grünbaum, Electrostatics and the Darboux process, in preparation.
  • 5. M. E. H. Ismail, An electrostatics model for zeros of general orthogonal polynomials, Pacific J. Math., to appear in 1999.
  • 6. W. B. Jones, W. J. Thron and H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc. 261 (1980), 503-528. MR 81j:30055
  • 7. F. Klein, Über die Nullstellen von den Polynomen und den Potenzreihen, Göttingen, 1894, pp. 211-218.
  • 8. M. Marden, On Stieltjes polynomials, Trans. Amer. Math. Soc. 33 (1931), 934-944.
  • 9. M. Marden, Geometry of Polynomials, Amer. Math. Soc. Surveys, no. 3, Providence, R.I., 1966. MR 37:1562
  • 10. G. Pólya, Sur un théorème de Stieltjes, C. R. Acad. Sci. Paris 155 (1912), 767-769.
  • 11. E. M. Purcell, Electricity and Magnetism, Berkeley Physics Course - Volume 2, McGraw-Hill, New York, 1963.
  • 12. A. Sri Ranga, Symmetric orthogonal polynomials and the associated orthogonal L-polynomials, Proc. Amer. Math. Soc. 123 (1995), 3135-3141. MR 95m:42035
  • 13. T. J. Stieltjes, Sur les quelques théorémes d'algébre, C.R. Acad. Sci. Paris 100 (1885), 439-440.
  • 14. T. J. Stieltjes, Sur les polynômes de Jacobi, C.R. Acad. Sci. Paris 100 (1885), 620-622.
  • 15. T. J. Stieltjes, Sur les racines de l'équation $X_{n}=0$, Acta Math. 9 (1886), 385-400.
  • 16. G. Szego, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Coll. Publ., Vol. 23, Providence, RI, 1975. MR 51:8724
  • 17. G. Valent and W. Van Assche, The impact of Stieltjes' work on continued fraction and orthogonal polynomials: additional material, J. Comput. Appl. Math. 65 (1995), 419-447. MR 97c:33001
  • 18. E. B. Van Vleck, On the polynomials of Stieltjes, Bull. Amer. Math. Soc. 4 (1898), 426-438.
  • 19. W. Van Assche, The impact of Stieltjes' work on continued fraction and orthogonal polynomials, in ``T. J. Stieltjes: Collected papers, Vol. I" (G. van Dijk, ed.), pp. 5-37, Springer-Verlag, Berlin, 1993.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34C10, 33C45, 34B30, 42C05

Retrieve articles in all journals with MSC (1991): 34C10, 33C45, 34B30, 42C05


Additional Information

Dimitar K. Dimitrov
Affiliation: Departamento de Ciências de Computação e Estatística, IBILCE, Universidade Estadual Paulista, 15054-000 São José do Rio Preto, SP, Brazil
Email: dimitrov@nimitz.dcce.ibilce.unesp.br

Walter Van Assche
Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee (Leuven), Belgium
Email: Walter.VanAssche@wis.kuleuven.ac.be

DOI: https://doi.org/10.1090/S0002-9939-00-05638-0
Keywords: Lam\'e differential equation, electrostatic equilibrium, Laurent polynomials, Gegenbauer polynomials
Received by editor(s): February 22, 1999
Published electronically: June 6, 2000
Additional Notes: The research of the first author is supported by the Brazilian Science Foundations FAPESP under Grant 97/6280-0 and CNPq under Grant 300645/95-3.
The second author is a Research Director of the Belgian Fund for Scientific Research (FWO-V). Research supported by FWO research project G.0278.97.
Communicated by: Hal L. Smith
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society