Composition operators on Dirichlet-type spaces

Author:
R. A. Hibschweiler

Journal:
Proc. Amer. Math. Soc. **128** (2000), 3579-3586

MSC (2000):
Primary 47B38; Secondary 30H05

Published electronically:
August 17, 2000

MathSciNet review:
1778280

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

The Dirichlet-type space ) is the Banach space of functions analytic in the unit disc with derivatives belonging to the Bergman space . Let be an analytic self-map of the disc and define for . The operator is bounded (respectively, compact) if and only if a related measure is Carleson (respectively, compact Carleson). If is bounded (or compact) on , then the same behavior holds on ) and on the weighted Dirichlet space . Compactness on implies that is compact on the Hardy spaces and the angular derivative exists nowhere on the unit circle. Conditions are given which, together with the angular derivative condition, imply compactness on the space . Inner functions which induce bounded composition operators on are discussed briefly.

**[1]**P. R. Ahern and D. N. Clark,*On inner functions with 𝐵^{𝑝} derivative*, Michigan Math. J.**23**(1976), no. 2, 107–118. MR**0414884****[2]**P. R. Ahern and D. N. Clark,*On inner functions with 𝐻^{𝑝}-derivative*, Michigan Math. J.**21**(1974), 115–127. MR**0344479****[3]**H. A. Allen and C. L. Belna,*Singular inner functions with derivative in 𝐵^{𝑝}*, Michigan Math. J.**19**(1972), 185–188. MR**0299796****[4]**K. R. M. Attele,*Analytic multipliers of Bergman spaces*, Michigan Math. J.**31**(1984), no. 3, 307–319. MR**767610**, 10.1307/mmj/1029003075**[5]**Sheldon Axler,*Multiplication operators on Bergman spaces*, J. Reine Angew. Math.**336**(1982), 26–44. MR**671320**, 10.1515/crll.1982.336.26**[6]**Joseph A. Cima and Warren R. Wogen,*A Carleson measure theorem for the Bergman space on the ball*, J. Operator Theory**7**(1982), no. 1, 157–165. MR**650200****[7]**Carl C. Cowen and Barbara D. MacCluer,*Composition operators on spaces of analytic functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR**1397026****[8]**Michael R. Cullen,*Derivatives of singular inner functions*, Michigan Math. J.**18**(1971), 283–287. MR**0283205****[9]**Peter L. Duren,*Theory of 𝐻^{𝑝} spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655****[10]**William W. Hastings,*A Carleson measure theorem for Bergman spaces*, Proc. Amer. Math. Soc.**52**(1975), 237–241. MR**0374886**, 10.1090/S0002-9939-1975-0374886-9**[11]**Mirjana Jovović and Barbara MacCluer,*Composition operators on Dirichlet spaces*, Acta Sci. Math. (Szeged)**63**(1997), no. 1-2, 229–247. MR**1459789****[12]**Ron Kerman and Eric Sawyer,*Carleson measures and multipliers of Dirichlet-type spaces*, Trans. Amer. Math. Soc.**309**(1988), no. 1, 87–98. MR**957062**, 10.1090/S0002-9947-1988-0957062-1**[13]**Barbara D. MacCluer,*Compact composition operators on 𝐻^{𝑝}(𝐵_{𝑁})*, Michigan Math. J.**32**(1985), no. 2, 237–248. MR**783578**, 10.1307/mmj/1029003191**[14]**Barbara D. MacCluer,*Composition operators on 𝑆^{𝑝}*, Houston J. Math.**13**(1987), no. 2, 245–254. MR**904956****[15]**Barbara D. MacCluer and Joel H. Shapiro,*Angular derivatives and compact composition operators on the Hardy and Bergman spaces*, Canad. J. Math.**38**(1986), no. 4, 878–906. MR**854144**, 10.4153/CJM-1986-043-4**[16]**D. J. Newman and Harold S. Shapiro,*The Taylor coefficients of inner functions*, Michigan Math. J.**9**(1962), 249–255. MR**0148874****[17]**George Piranian,*Bounded functions with large circular variation*, Proc. Amer. Math. Soc.**19**(1968), 1255–1257. MR**0230906**, 10.1090/S0002-9939-1968-0230906-X**[18]**David Protas,*Blaschke products with derivative in 𝐻^{𝑝} and 𝐵^{𝑝}*, Michigan Math. J.**20**(1973), 393–396. MR**0344478****[19]**Raymond C. Roan,*Composition operators on the space of functions with 𝐻^{𝑝}-derivative*, Houston J. Math.**4**(1978), no. 3, 423–438. MR**0512878****[20]**Walter Rudin,*The radial variation of analytic functions*, Duke Math. J.**22**(1955), 235–242. MR**0079093****[21]**Joel H. Shapiro,*Compact composition operators on spaces of boundary-regular holomorphic functions*, Proc. Amer. Math. Soc.**100**(1987), no. 1, 49–57. MR**883400**, 10.1090/S0002-9939-1987-0883400-9**[22]**Joel H. Shapiro,*Composition operators and classical function theory*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR**1237406****[23]**J. H. Shapiro, private communication.**[24]**Joel H. Shapiro,*The essential norm of a composition operator*, Ann. of Math. (2)**125**(1987), no. 2, 375–404. MR**881273**, 10.2307/1971314**[25]**J. H. Shapiro and P. D. Taylor,*Compact, nuclear, and Hilbert-Schmidt composition operators on 𝐻²*, Indiana Univ. Math. J.**23**(1973/74), 471–496. MR**0326472****[26]**David A. Stegenga,*Multipliers of the Dirichlet space*, Illinois J. Math.**24**(1980), no. 1, 113–139. MR**550655****[27]**Nina Zorboska,*Composition operators on 𝑆ₐ spaces*, Indiana Univ. Math. J.**39**(1990), no. 3, 847–857. MR**1078741**, 10.1512/iumj.1990.39.39041**[28]**Nina Zorboska,*Composition operators on weighted Dirichlet spaces*, Proc. Amer. Math. Soc.**126**(1998), no. 7, 2013–2023. MR**1443862**, 10.1090/S0002-9939-98-04266-X

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47B38,
30H05

Retrieve articles in all journals with MSC (2000): 47B38, 30H05

Additional Information

**R. A. Hibschweiler**

Affiliation:
Department of Mathematics, University of New Hampshire, Durham, New Hampshire 03824

Email:
rah2@cisunix.unh.edu

DOI:
https://doi.org/10.1090/S0002-9939-00-05886-X

Keywords:
Composition operator,
Dirichlet space,
Carleson measure,
angular derivative

Received by editor(s):
October 16, 1998

Received by editor(s) in revised form:
February 12, 1999

Published electronically:
August 17, 2000

Communicated by:
David R. Larson

Article copyright:
© Copyright 2000
American Mathematical Society