Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterization of discriminator varieties


Author: Diego Vaggione
Journal: Proc. Amer. Math. Soc. 129 (2001), 663-666
MSC (2000): Primary 08A05, 08A30, 08A40, 08B10, 06E15
DOI: https://doi.org/10.1090/S0002-9939-00-05627-6
Published electronically: August 30, 2000
MathSciNet review: 1706965
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove that a variety $\mathcal{V}$ is a discriminator variety if and only if $\mathcal{V}$ has the Fraser-Horn property and every member of $\mathcal{V}$ is representable as a Boolean product whose factors are directly indecomposable or trivial.


References [Enhancements On Off] (What's this?)

  • 1. D. BIGELOW and S. BURRIS, Boolean algebras of factor congruences, Acta Sci. Math. 54 (1990), 11-20. MR 91j:08012
  • 2. S. BURRIS and H. SANKAPPANAVAR, A course in Universal Algebra, Springer-Verlag, New York, 1981. MR 83k:08001
  • 3. G. A. FRASER and A. HORN, Congruence relations in direct products, Proc. Amer. Math. Soc. 26 (1970), 390-394. MR 42:169
  • 4. R. McKENZIE, G. McNULTY and W. TAYLOR, Algebras, Lattices, Varieties, Volume 1, The Wadswort & Brooks/Cole Math. Series, Monterey, California (1987). MR 88e:08001
  • 5. D. VAGGIONE, Locally Boolean spectra, Algebra Universalis 33 (1995), 319-354. MR 95m:08007
  • 6. D. VAGGIONE, Free algebras in discriminator varieties, Algebra Universalis 34 (1995), 391-403. MR 97a:08019
  • 7. D. VAGGIONE, $\mathcal{V}$with factorable congruences and $\mathcal{V}=I\Gamma ^{a}(\mathcal{V}_{DI})$imply $\mathcal{V}$ is a discriminator variety, Acta Sci. Math. 62 (1996), 359-368. MR 97h:08012
  • 8. D. VAGGIONE, Modular varieties with the Fraser-Horn property, Proc. Amer. Math. Soc. 127 (1999), 701-708. CMP 99:06
  • 9. D. VAGGIONE, Central elements in varieties with the Fraser-Horn property, Advances in Math. 148 (1999), 193-202.
  • 10. H. WERNER, Discriminator algebras, algebraic representation and model theoretic properties, Akademie-Verlag, Berlin, 1978. MR 80f:08009

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 08A05, 08A30, 08A40, 08B10, 06E15

Retrieve articles in all journals with MSC (2000): 08A05, 08A30, 08A40, 08B10, 06E15


Additional Information

Diego Vaggione
Affiliation: Facultad de Matemática, Astronomía y Física (FaMAF), Universidad Nacional de Córdoba - Ciudad Universitaria Córdoba 5000, Argentina
Email: vaggione@mate.uncor.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05627-6
Received by editor(s): March 2, 1999
Received by editor(s) in revised form: May 14, 1999
Published electronically: August 30, 2000
Additional Notes: The author’s research was supported by CONICOR and SECYT (UNC)
Communicated by: Carl G. Jockusch, Jr.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society