Characterization of discriminator varieties
Author:
Diego Vaggione
Journal:
Proc. Amer. Math. Soc. 129 (2001), 663-666
MSC (2000):
Primary 08A05, 08A30, 08A40, 08B10, 06E15
DOI:
https://doi.org/10.1090/S0002-9939-00-05627-6
Published electronically:
August 30, 2000
MathSciNet review:
1706965
Full-text PDF
Abstract | References | Similar Articles | Additional Information
We prove that a variety is a discriminator variety if and only if
has the Fraser-Horn property and every member of
is representable as a Boolean product whose factors are directly indecomposable or trivial.
- 1. D. BIGELOW and S. BURRIS, Boolean algebras of factor congruences, Acta Sci. Math. 54 (1990), 11-20. MR 91j:08012
- 2. S. BURRIS and H. SANKAPPANAVAR, A course in Universal Algebra, Springer-Verlag, New York, 1981. MR 83k:08001
- 3. G. A. FRASER and A. HORN, Congruence relations in direct products, Proc. Amer. Math. Soc. 26 (1970), 390-394. MR 42:169
- 4. R. McKENZIE, G. McNULTY and W. TAYLOR, Algebras, Lattices, Varieties, Volume 1, The Wadswort & Brooks/Cole Math. Series, Monterey, California (1987). MR 88e:08001
- 5. D. VAGGIONE, Locally Boolean spectra, Algebra Universalis 33 (1995), 319-354. MR 95m:08007
- 6. D. VAGGIONE, Free algebras in discriminator varieties, Algebra Universalis 34 (1995), 391-403. MR 97a:08019
- 7.
D. VAGGIONE,
with factorable congruences and
imply
is a discriminator variety, Acta Sci. Math. 62 (1996), 359-368. MR 97h:08012
- 8. D. VAGGIONE, Modular varieties with the Fraser-Horn property, Proc. Amer. Math. Soc. 127 (1999), 701-708. CMP 99:06
- 9. D. VAGGIONE, Central elements in varieties with the Fraser-Horn property, Advances in Math. 148 (1999), 193-202.
- 10. H. WERNER, Discriminator algebras, algebraic representation and model theoretic properties, Akademie-Verlag, Berlin, 1978. MR 80f:08009
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 08A05, 08A30, 08A40, 08B10, 06E15
Retrieve articles in all journals with MSC (2000): 08A05, 08A30, 08A40, 08B10, 06E15
Additional Information
Diego Vaggione
Affiliation:
Facultad de Matemática, Astronomía y Física (FaMAF), Universidad Nacional de Córdoba - Ciudad Universitaria Córdoba 5000, Argentina
Email:
vaggione@mate.uncor.edu
DOI:
https://doi.org/10.1090/S0002-9939-00-05627-6
Received by editor(s):
March 2, 1999
Received by editor(s) in revised form:
May 14, 1999
Published electronically:
August 30, 2000
Additional Notes:
The author’s research was supported by CONICOR and SECYT (UNC)
Communicated by:
Carl G. Jockusch, Jr.
Article copyright:
© Copyright 2000
American Mathematical Society