A capacitary weak type inequality for Sobolev functions and its applications

Author:
Wei-Shyan Tai

Journal:
Proc. Amer. Math. Soc. **129** (2001), 699-711

MSC (2000):
Primary 26B35, 41A30, 46E35

DOI:
https://doi.org/10.1090/S0002-9939-00-05976-1

Published electronically:
November 3, 2000

MathSciNet review:
1801995

Full-text PDF

Abstract | References | Similar Articles | Additional Information

In this paper a capacitary weak type inequality for Sobolev functions is established and is applied to reprove some well-known results concerning Lebesgue points, Taylor expansions in the -sense, and the Lusin type approximation of Sobolev functions.

**1.**D. R. Adams,*Maximal operator and capacity*, Proc. Amer. Math. Soc.,**34**(1972), 152-156. MR**50:2807****2.**D. R. Adams,*Quasi-additivity and sets of finite -capacity*, Pacific J. Math.,**79**(1978), 283-291. MR**81j:31006****3.**T. Bagby and W. P. Ziemer,*Pointwise differentiability and absolute continuity*, Trans. Amer. Math. Soc.**191**(1974), 129-148. MR**49:9129****4.**A. P. Calderón,*Lebesgue spaces of differentiable functions and distributions*, Proc. Symp. Pure Math., IV (1961), 33-49. MR**26:603****5.**A. P. Calderón and A. Zygmund,*Local properties of solutions of elliptic partial differential equations*, Studia Math.,**20**(1961), 171-225. MR**25:310****6.**H. Federer,*Geometric Measure Theory*, Springer-Verlag, New York, Heidelberg, 1969. MR**41:1976****7.**H. Federer and W. P. Ziemer,*The Lebesgue set of a function whose distribution derivatives are th power summable*, Ind. Univ. Math. J.,**22**(1972), 139-158. MR**55:8321****8.**Fon-Che Liu,*A Lusin type property of Sobolev functions*, Ind. Univ. Math. J.,**26**(1977), 645-651.**9.**Fon-Che Liu and Wei-Shyan Tai,*Maximal Steepness and Lusin type properties*, Ric. Mat.,**43**(1994), 365-384. MR**96c:26013****10.**B. Malgrange,*Ideals of Differentiable Functions*, Oxford University Press, 1966. MR**35:3446****11.**N. Meyers,*Taylor expansion of Bessel potentials*, Indiana Univ. Math. J.,**23**(1974), 1043-1049. MR**50:980****12.**J. Michael and W. P. Ziemer,*A Lusin type approximation of Sobolev functions by smooth functions*, Contemporary Mathematics, AMS,**42**(1985), 135-167. MR**87e:46051****13.**E. M. Stein,*Singular Integrals and Differentiability Properties of Functions*, Princeton University Press, 1970. MR**44:7280****14.**H. Whitney,*Analytic extensions of differentiable functions defined in closed sets*, Trans. Amer. Math. Soc.,**36**(1934), 63-89. CMP**95:18****15.**W. P. Ziemer,*Uniform differentiability of Sobolev functions*, Ind. Univ. Math. J.,**37**(1988), 789-699. MR**90f:46054****16.**W. P. Ziemer,*Weakly Differentiable Functions*, Springer-Verlag, New York, 1989. MR**91e:46046**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
26B35,
41A30,
46E35

Retrieve articles in all journals with MSC (2000): 26B35, 41A30, 46E35

Additional Information

**Wei-Shyan Tai**

Affiliation:
Department of Mathematics, National Chung Cheng University, Mingshiung, Chai Yi 61117, Taiwan, R.O.C.

DOI:
https://doi.org/10.1090/S0002-9939-00-05976-1

Keywords:
Sobolev functions,
Riesz capacities,
Lusin type properties

Received by editor(s):
May 28, 1996

Published electronically:
November 3, 2000

Additional Notes:
This work was partially supported by Academia Sinica-Taipei, Taiwan, R.O.C. The author is deceased

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 2000
American Mathematical Society