Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Polynomial bounds for rings of invariants


Author: Harm Derksen
Journal: Proc. Amer. Math. Soc. 129 (2001), 955-963
MSC (2000): Primary 13A50
Published electronically: October 20, 2000
MathSciNet review: 1814136
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

HILBERT proved that invariant rings are finitely generated for linearly reductive groups acting rationally on a finite dimensional vector space. POPOV gave an explicit upper bound for the smallest integer $d$ such that the invariants of degree $\leq d$ generate the invariant ring. This bound has factorial growth. In this paper we will give a bound which depends only polynomially on the input data.


References [Enhancements On Off] (What's this?)

  • 1. Michel Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), no. 2, 397–424 (French). MR 1016427, 10.1215/S0012-7094-89-05818-3
  • 2. Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
  • 3. H. Derksen, Constructive Invariant Theory and the Linearization Problem, Ph.D. thesis, Basel, 1997.
  • 4. H. Derksen, Computation of reductive group invariants, Adv. in Math. 141 (1999), 366-384.
  • 5. H. Derksen, H. Kraft, Constructive invariant theory, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Smin. Congr. 2, Soc. Math. France, Paris, 1997, 221-244. CMP 99:08
  • 6. David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, 10.1016/0021-8693(84)90092-9
  • 7. William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • 8. Karin Gatermann, Semi-invariants, equivariants and algorithms, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 2, 105–124. MR 1462492, 10.1007/BF01191379
  • 9. P. Gordan, Beweis dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten solcher Formen ist, J. für reine u. angew. Math. 69 (1868), 323-354.
  • 10. D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-534.
  • 11. D. Hilbert, Über die vollen Invariantensysteme Math. Ann. 42 (1893), 313-373.
  • 12. K. Hiss, Constructive invariant theory for reductive algebraic groups, Preprint, 1993.
  • 13. Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 0347810
  • 14. C. Jordan, Mémoire sur les covariants des formes binaires, J. de Math. (3) 2 (1876), 177-232.
  • 15. C. Jordan, Sur les covariants des formes binaires, J. de Math. (3) 5 (1879), 345-378.
  • 16. B. Ya. Kazarnovskiĭ, Newton polyhedra and Bezout’s formula for matrix functions of finite-dimensional representations, Funktsional. Anal. i Prilozhen. 21 (1987), no. 4, 73–74 (Russian). MR 925078
  • 17. G. Kemper, The INVAR package for calculating rings of invariants, IWR Preprint 93-94 (1993), University of Heidelberg.
  • 18. Gregor Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), no. 3, 351–366. MR 1400337, 10.1006/jsco.1996.0017
  • 19. George Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), no. 1, 19–32. MR 514958
  • 20. Friedrich Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989), no. 1, 40–54 (German, with English summary). MR 1029400, 10.1016/0021-8693(89)90271-8
  • 21. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92.
  • 22. V. L. Popov, Constructive invariant theory, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 303–334. MR 646826
  • 23. V. Popov, The constructive theory of invariants, Math. USSR Izvest. 10 (1982), 359-376.
  • 24. Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. MR 1255980
  • 25. Barbara J. Schmid, Generating invariants of finite groups, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 1, 1–6 (English, with French summary). MR 980311
  • 26. Barbara J. Schmid, Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 35–66. MR 1180987, 10.1007/BFb0083501
  • 27. David L. Wehlau, Constructive invariant theory for tori, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 1055–1066 (English, with English and French summaries). MR 1252937
  • 28. Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A50

Retrieve articles in all journals with MSC (2000): 13A50


Additional Information

Harm Derksen
Affiliation: Department of Mathematics, Massachusetts Institute of Technology 77, Massachusetts Avenue, Cambridge, Massachusetts 02139
Email: hderksen@math.mit.edu

DOI: https://doi.org/10.1090/S0002-9939-00-05698-7
Received by editor(s): July 8, 1999
Published electronically: October 20, 2000
Additional Notes: The author was partially supported by the Swiss National Science Foundation (SNF) and the Freiwillige Akademische Gesellschaft.
Communicated by: Michael Stillman
Article copyright: © Copyright 2000 American Mathematical Society