Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quasitilted extensions of algebras I


Authors: Flávio Ulhoa Coelho, Maria Izabel R. Martins and José Antonio de la Peña
Journal: Proc. Amer. Math. Soc. 129 (2001), 1289-1297
MSC (2000): Primary 16G70, 16G20, 16E10
DOI: https://doi.org/10.1090/S0002-9939-00-05667-7
Published electronically: October 24, 2000
MathSciNet review: 1712929
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A$ be a connected finite dimensional $k$-algebra, and let $M$ be a nonzero decomposable $A$-module such that the one-point extension $A[M]$ is quasitilted. We show here that every nonzero indecomposable direct summand of $M$ is directing and $A$ is a tilted algebra.


References [Enhancements On Off] (What's this?)

  • 1. M. Auslander, I. Reiten and S. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995. MR 96c:16015
  • 2. K. Bongartz and P. Gabriel, Covering spaces in Representation Theory, Invent. Math. 65 No. 3 (1982) 331-378. MR 84i:16030
  • 3. F. U. Coelho and D. Happel, Quasitilted algebras admit a preprojective component, Proceedings Am. Math. Soc. 125, No. 5 (1997) 1283-1291. MR 97g:16015
  • 4. F. U. Coelho, Ma. I. R. Martins, J. A. de la Peña, Quasitilted extensions of algebras II, J. Algebra 227 (2000), 582-594.
  • 5. F. U. Coelho and A. Skowronski, On Auslander-Reiten components for quasitilted algebras, Fundamenta Math. 149 (1996) 67-82. MR 97g:16025
  • 6. D. Happel and C. M. Ringel, Directing projective modules, Arch. Math. 60 (1993) 237-246. MR 94b:16016
  • 7. D. Happel and I. Reiten, Directing objects in hereditary categories, Trends in Representation Theory of Finite Dimensional Algebras, Cont. Math. 229 (1998), 169-179. CMP 99:09
  • 8. D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc. 120 (1996), No. 575. MR 97j:16009
  • 9. O. Kerner. Tilting wild algebras. J. London Math. Soc. Math. Soc. 39 (1989) 29-47. MR 90d:16025
  • 10. O. Kerner, Stable components of Wild tilted algebras, J. Algebra 142 (1991) 37-57. MR 92k:16021
  • 11. H. Lenzing and A. Skowronski, Quasitilted algebras of canonical type, Coll. Math. 71 (1996) 161-181. MR 97j:16019
  • 12. J. A. de la Peña, On the abelian Galois coverings of an algebra, J. Algebra 102 No. 1a (1986) 129-134. MR 87m:16001
  • 13. J. A. de la Peña and I. Reiten, Trisection of module categories, To appear.
  • 14. I. Reiten and Ch. Riedtmann, Skew group algebras in the representation theory of artin algebras, J. Algebra 92 (1985), 224-282. MR 86k:16024
  • 15. C. M. Ringel, Integral quadratic forms and tame algebras, Lecture Notes in Mathematics 1099 Springer (1984). MR 87f:16027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16G70, 16G20, 16E10

Retrieve articles in all journals with MSC (2000): 16G70, 16G20, 16E10


Additional Information

Flávio Ulhoa Coelho
Affiliation: Departamento de Matemática-IME, Universidade de São Paulo, CP 66281, São Paulo, SP, 05315-970, Brazil
Email: fucoelho@ime.usp.br

Maria Izabel R. Martins
Affiliation: Departamento de Matemática-IME, Universidade de São Paulo, CP 66281, São Paulo, SP, 05315-970, Brazil
Email: bel@ime.usp.br

José Antonio de la Peña
Affiliation: Instituto de Matemáticas, UNAM, Mexico 04510 D.F., Mexico
Email: jap@matem.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-00-05667-7
Keywords: Quasitilted algebras, one-point extensions, directing modules
Received by editor(s): October 9, 1998
Received by editor(s) in revised form: August 11, 1999
Published electronically: October 24, 2000
Communicated by: Ken Goodearl
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society