Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Estimating the rational LS-category of elliptic spaces


Authors: Sonia Ghorbal and Barry Jessup
Journal: Proc. Amer. Math. Soc. 129 (2001), 1833-1842
MSC (2000): Primary 55P62
DOI: https://doi.org/10.1090/S0002-9939-00-05739-7
Published electronically: October 31, 2000
MathSciNet review: 1814117
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An elliptic space is one whose rational homotopy and rational cohomology are both finite dimensional. We prove, for Toomer's invariant, two improvements of the estimate of the Mapping theorem relying on data from the homotopy Lie algebra of the space. In particular, we show that if $S$ is elliptic,


\begin{displaymath}\text{\rm cat}_{0} S \ge \dim L_{S}^{\text{\rm ev}} +\operatorname{dim} ZL_{S}^{\text{odd}},\end{displaymath}

where $L_{S}$ is the rational homotopy Lie algebra of $S$ and $ZL_{S}$ its centre.

Several interesting examples are presented to illustrate our results.


References [Enhancements On Off] (What's this?)

  • [BG] A.K. Bousfield and V.K.A.M. Gugenheim, On PL De Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976). MR 54:13906
  • [C] H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie (espaces fibrés), Bruxelles (1950),Thone, Liège (1951), 55-71. MR 13:107f
  • [F] Y. Félix, La Dichotomie Elliptique-Hyperbolique en Homotopie Rationnelle, Astérisque 176 (1989). MR 91c:55016
  • [FH] Y. Félix and S. Halperin, Rational L.-S. category and its applications, Trans. Amer. Math. Soc. 273 (1982), 1-38. MR 84h:55011
  • [FHL] Y. Félix, S. Halperin and Jean-Michel Lemaire, The rational LS category of products and Poincare duality complexes, Topology 37, No. 4 (1998), 749-756. MR 99a:55003
  • [FHT] Y. Félix, S. Halperin, and J.-C. Thomas,, The homotopy Lie algebra for finite complexes, Inst. Hautes Études Sci. Publ. Math 56 (1982), 179-202 (1983). MR 85c:55010
  • [FHT1] -, Gorenstein Spaces, Advances in Mathematics 71 (1988), no. 1, 92-112. MR 89k:55019
  • [GHV] W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, VIII, Academic Press, Inc., 1976. MR 53:4110
  • [G] P.P. Grivel, La suite spectral d'une fibration de Kan, C.R.Acad. Sci. Paris 282 (1976), 1227-1229. MR 53:14494
  • [H] S. Halperin, Lectures on Minimal Models, Mém. Soc. Math France 9-10 (1983). MR 85i:55009
  • [H1] -, Finiteness in the Minimal Models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199. MR 57:1493
  • [He] Kathryn P. Hess, A Proof of Ganea's Conjecture for Rational Spaces, Topology 30 (2) (1991), 205-214. MR 92d:55012
  • [J1] Barry Jessup, L.-S. category and homogeneous spaces, Journal of Pure and Applied Algebra 65 (1990), 45-56. MR 91e:55004
  • [J2] -, Rational L.-S. category and a conjecture of Ganea, Journal of Pure and Applied Algebra 65 (1990), 57-67. MR 91e:55005
  • [J] -, Holonomy-Nilpotent Fibrations and Rational Lusternik-Schnirelmann Category, Topology 34 (4) (1995), 759-770. MR 96k:55014
  • [M] M. Mather, Pull-backs in homotopy theory, Canad. J. Math. 28 (1976), 225-263. MR 53:6510
  • [S] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math 47 (1978), 269-331. MR 58:31119
  • [T] G.H. Toomer, Lusternik-Schnirelmann category and the Moore spectral sequence, Math. Z. 138 (1974), 123-143. MR 50:8509
  • [W] George W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, Berlin-Hedelberg-New York, 1978. MR 80b:55001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P62

Retrieve articles in all journals with MSC (2000): 55P62


Additional Information

Sonia Ghorbal
Affiliation: Institut Préparatoire aux Études d’ingénieurs de Sousse, Tunisie
Email: Sonia.Ghorbal@ipeiss.rnu.tn

Barry Jessup
Affiliation: Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Email: bjessup@uottawa.ca

DOI: https://doi.org/10.1090/S0002-9939-00-05739-7
Keywords: Elliptic spaces, minimal models, rational category
Received by editor(s): September 15, 1999
Published electronically: October 31, 2000
Additional Notes: This research was partially supported by a UCL postdoctoral grant, the University of Ottawa and the National Science and Engineering Research Council of Canada.
The second author also acknowledges the support of the National Science and Engineering Research Council of Canada.
Communicated by: Ralph Cohen
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society