Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed points for convex continuous mappings in topological vector spaces


Author: Yu-Qing Chen
Journal: Proc. Amer. Math. Soc. 129 (2001), 2157-2162
MSC (2000): Primary 54H25; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-00-05767-1
Published electronically: November 21, 2000
MathSciNet review: 1825929
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove the following result. Let $C$ be a convex compact subset in a topological vector space, and $T:C\to C$ a convex continuous mapping. (See Definition 1.1.) Then $T$ has a fixed point. Moreover, continuous mappings that can be approximated by convex continuous mappings also have the fixed point property.


References [Enhancements On Off] (What's this?)

  • 1. F. E. Browder, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. MR 37:4679
  • 2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. MR 86j:47001
  • 3. J. Dugundji, A. Granas, Fixed Point Theory, I, Warzawa, 1982. MR 83j:54038
  • 4. S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, Amer. J. Math., 58 (1946), 214-222. MR 8:51a
  • 5. K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 121-126. MR 13:858d
  • 6. I. Glicksberg, A further generalization of the Kakutani fixed-point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174. MR 13:764g
  • 7. A. Granas, KKM-maps and their applications to nonlinear problems, The Scottish Book, Ed., R. D. Mauldin, Birkhauser, 1981, p. 45-61.
  • 8. O. Hadzic, On Kakutani's fixed point theorem in topological vector spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30 (1982), 141-144. MR 84a:47073
  • 9. O. Hadzic, Fixed point theorems in not necessarily locally convex topological vector spaces, Funtional Analysis, Proc. Dubrovnik 1981, Lect. Notes in Math., vol. 948, Springer-Verlag, 1982, pp. 118-130.
  • 10. C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl., 38 (1972), 205-207. MR 46:2505
  • 11. A. Idzik, Almost fixed point theorems, Proc. Amer. Math. Soc., 104 (1988), 779-784. MR 89i:47108
  • 12. W. Kaballo, Abbildungsgrad in Hausdorffschen topologischen vektorraumen, Manuscripta Math., 8 (1973), 209-216. MR 50:10922
  • 13. N. J. Kalton, N. T. Peck, A re-examination of Roberts' example of compact convex sets with no extreme points, Math. Ann., 253 (1980), 89-101. MR 82h:46055
  • 14. V. Klee, Leray-Schauder theory without local convexity, Math. Ann., 141 (1960), 286-296. MR 24:A1004
  • 15. M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math., 73 (1951), 497-511. MR 13:150b
  • 16. Nguyen To Nhu, The finite dimensional approximation property and the AR-property in needle point spaces, J. London Math. Soc., 56 (1997), 584-594. MR 99k:46007
  • 17. Nguyen To Nhu, The fixed point property for weakly compact convex sets: searching for a solution to Schauder's conjecture, Topology and its appl., 68 (1996), 1-12. MR 96k:46013
  • 18. Nguyen To Nhu and Le Hoang Tri, No Roberts space is a counterexample to Schauder's conjecture, Topology 33 (1994), 371-378. MR 95h:46014
  • 19. S. Reich, Fixed points in locally convex spaces, Math. Z., 125 (1972), 17-31. MR 46:6110
  • 20. S. Reich, On fixed point theorems obtained from existence theorems for differential equations, J. Math. Anal. Appl., 54 (1974), 26-36. MR 53:6373
  • 21. J. W. Roberts, A compact convex set with no extreme points, Studia math., 60 (1977), 255-266. MR 57:10595
  • 22. J. W. Roberts, Pathological Compact Convex Sets in the Spaces $L_{p}$, $0\leq p<1$, The Altgeld Book, University of Illinois, 1976.
  • 23. S. Rolewicz, Metric Linear Spaces, Warszawa, 1972. MR 55:10993
  • 24. B. Rzepecki, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 473-480. MR 81b:47073
  • 25. J. Schauder, Der Fixpunktsatz in Funktionalraumen, Studia Math., 2 (1930), 171-180.
  • 26. V. M. Sehgal and E. Morrison, A fixed point theorem for mutifunctions, Proc. Amer. Math. Soc., 38 (1973), 643-646. MR 47:906
  • 27. A. Tychonoff, Ein fixpunktsatz, Math. Ann., 111 (1935), 767-776.
  • 28. S. S. Zhang and Y. Q. Chen, Topological degree theory and fixed point theorems in probabilistic metric spaces, Applied Math. Mechanics, 10 (1989), 495-505. CMP 21:16
  • 29. K. Zima, On Schauder's fixed point theorem with respect to para-normed space, Comment. Math. Prace Mat., 19 (1977), 421-423.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54H25, 47H10

Retrieve articles in all journals with MSC (2000): 54H25, 47H10


Additional Information

Yu-Qing Chen
Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701-2979; Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China
Email: yuqchen@bing.math.ohiou.edu, nic2601@scu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-00-05767-1
Keywords: Topological vector space, convex compact set, fixed point
Received by editor(s): July 14, 1999
Received by editor(s) in revised form: October 27, 1999
Published electronically: November 21, 2000
Communicated by: Alan Dow
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society