harmonic approximation on closed sets
Authors:
A. Bonilla and J. C. Fariña
Journal:
Proc. Amer. Math. Soc. 129 (2001), 27412752
MSC (2000):
Primary 31A05; Secondary 30E10
Published electronically:
February 9, 2001
MathSciNet review:
1838798
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper the harmonic approximation ( ) on relatively closed subsets of a domain in the complex plane is characterized under the same conditions given by S. Gardiner for the uniform case. Thus, the result of P. Paramonov on harmonic polynomial approximation for compact subsets is extended to closed sets. Moreover, the problem of uniform approximation with continuous extension to the boundary for harmonic functions and similar questions in harmonic approximation are also studied.
 1.
Arakeljan, N.: Uniform and tangential approximation by analytic functions, Transl. Amer. Math. Soc., 122 (1984), 8597.
 2.
Thomas
Bagby and P.
M. Gauthier, Approximation by harmonic functions on closed subsets
of Riemann surfaces, J. Analyse Math. 51 (1988),
259–284. MR
963157 (89j:30064), http://dx.doi.org/10.1007/BF02791126
 3.
T.
Bagby and P.
M. Gauthier, Uniform approximation by global harmonic
functions, (Hanstholm, 1991) NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., vol. 365, Kluwer Acad. Publ., Dordrecht, 1992,
pp. 15–26. MR 1168705
(93g:31015)
 4.
Thomas
Bagby and Paul
M. Gauthier, Harmonic approximation on closed subsets of Riemannian
manifolds, Complex potential theory (Montreal, PQ, 1993) NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, Kluwer Acad. Publ.,
Dordrecht, 1994, pp. 75–87. MR 1332959
(96k:31013)
 5.
A.
Boven and P.
V. Paramonov, Approximation by meromorphic and entire solutions of
elliptic equations in Banach spaces of distributions, Mat. Sb.
189 (1998), no. 4, 3–24 (Russian, with Russian
summary); English transl., Sb. Math. 189 (1998),
no. 34, 481–502. MR 1632406
(99i:41019), http://dx.doi.org/10.1070/SM1998v189n04ABEH000303
 6.
A.
Bonilla and J.
C. Fariña, Meromorphic and holomorphic approximation in
𝐶^{𝑚}norms, J. Math. Anal. Appl. 181
(1994), no. 1, 132–149. MR 1257958
(94m:30076), http://dx.doi.org/10.1006/jmaa.1994.1009
 7.
A.
Bonilla and J.
C. Fariña, 𝐿𝑖𝑝𝛼
approximation on closed sets with 𝑙𝑖𝑝𝛼
extension, Canad. Math. Bull. 38 (1995), no. 1,
23–33. MR
1319897 (96e:30093), http://dx.doi.org/10.4153/CMB19950043
 8.
A.
Bonilla and J.
C. Fariña, Elliptic fusion lemma, Math. Japon.
41 (1995), no. 2, 441–445. MR 1326977
(96d:30047)
 9.
A.
Bonilla and J.
C. Fariña, Uniform approximation by solutions of elliptic
equations with continuous extension to the boundary, Complex Variables
Theory Appl. 28 (1995), no. 2, 111–120. MR 1700076
(2000f:41028)
 10.
A.
Dufresnoy, P.
M. Gauthier, and W.
H. Ow, Uniform approximation on closed sets by solutions of
elliptic partial differential equations, Complex Variables Theory
Appl. 6 (1986), no. 24, 235–247. MR 871732
(88b:35086)
 11.
J.
Carlos Fariña, Lipschitz approximation on closed sets,
J. Anal. Math. 57 (1991), 152–171. MR 1191745
(94e:30013)
 12.
Stephen
J. Gardiner, Superharmonic extension and harmonic
approximation, Ann. Inst. Fourier (Grenoble) 44
(1994), no. 1, 65–91 (English, with English and French
summaries). MR
1262880 (95a:31006)
 13.
Stephen
J. Gardiner, Harmonic approximation, London Mathematical
Society Lecture Note Series, vol. 221, Cambridge University Press,
Cambridge, 1995. MR 1342298
(96j:31001)
 14.
Stephen
J. Gardiner, Uniform harmonic approximation with continuous
extension to the boundary, J. Anal. Math. 68 (1996),
95–106. MR
1403252 (98e:31004), http://dx.doi.org/10.1007/BF02790205
 15.
Stephen
J. Gardiner, Decomposition of approximable harmonic functions,
Math. Ann. 308 (1997), no. 1, 175–185. MR 1446206
(98e:31005), http://dx.doi.org/10.1007/s002080050071
 16.
M.
Goldstein and W.
H. Ow, Uniform harmonic approximation with continuous extension to
the boundary, Canad. J. Math. 40 (1988), no. 6,
1375–1388. MR 990103
(90d:41033), http://dx.doi.org/10.4153/CJM19880613
 17.
M.
Goldstein and W.
H. Ow, A characterization of harmonic
Arakelyan sets, Proc. Amer. Math. Soc.
119 (1993), no. 3,
811–816. MR 1149971
(93m:31005), http://dx.doi.org/10.1090/S00029939199311499715
 18.
G.
M. Goluzin, Geometric theory of functions of a complex
variable, Translations of Mathematical Monographs, Vol. 26, American
Mathematical Society, Providence, R.I., 1969. MR 0247039
(40 #308)
 19.
Elgin
H. Johnston, The boundary modulus of continuity of harmonic
functions, Pacific J. Math. 90 (1980), no. 1,
87–98. MR
599322 (82a:31002)
 20.
Joan
Mateu and Joan
Orobitg, Lipschitz approximation by harmonic functions and some
applications to spectral synthesis, Indiana Univ. Math. J.
39 (1990), no. 3, 703–736. MR 1078735
(92e:46052), http://dx.doi.org/10.1512/iumj.1990.39.39035
 21.
Peter
V. Paramonov and Joan
Verdera, Approximation by solutions of elliptic equations on closed
subsets of Euclidean space, Math. Scand. 74 (1994),
no. 2, 249–259. MR 1298365
(95i:41040)
 22.
Paramonov, P.: approximation by harmonic polynomial in compact sets in , Russian Acad. Sci. Sb. Math., 78 (1994), 231251.
 23.
Paramonov, P.: Harmonic polynomial approximation on compact subsets of the plane, Preprint Universitat Autonoma de Barcelona, 134, Setembre 1991.
 24.
Alice
Roth, Uniform and tangential approximations by meromorphic
functions on closed sets, Canad. J. Math. 28 (1976),
no. 1, 104–111. MR 0470220
(57 #9978)
 25.
Alice
Roth, Uniform approximation by meromorphic functions on closed sets
with continuous extension into the boundary, Canad. J. Math.
30 (1978), no. 6, 1243–1255. MR 511560
(80d:30037), http://dx.doi.org/10.4153/CJM19781034
 26.
Arne
Stray, Decomposition of approximable functions, Ann. of Math.
(2) 120 (1984), no. 2, 225–235. MR 763906
(86b:30060), http://dx.doi.org/10.2307/2006941
 1.
 Arakeljan, N.: Uniform and tangential approximation by analytic functions, Transl. Amer. Math. Soc., 122 (1984), 8597.
 2.
 Bagby, T. and Gauthier, P. M.: Approximation by harmonic functions on closed subsets of Riemann surfaces, J. Analyse Math., 51 (1988), 259284. MR 89j:30064
 3.
 Bagby, T. and Gauthier, P. M.: Uniform approximation by global harmonic functions, in Approximation by solutions of partial differential equations, B. Fuglebe et al. (eds), Kluwer Academic Publishers (1992), 1526. MR 93g:31015
 4.
 Bagby, T. and Gauthier, P. M.: Harmonic approximation on closed subsets of Riemannian manifolds, P. M. Gauthier (ed.), Complex Potential Theory, 7587 (1994), Kluwer Academic Publishers. MR 96k:31013
 5.
 Boivin, A. and Paramonov, P.: Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions, Math. Sb., 189(4), (1998), 481502. MR 99i:41019
 6.
 Bonilla, A and Fariña, J.C.: Meromorphic and Holomorphic Approximation in Norms, J. Math Anal. Appl. 181, (1994), 132149. MR 94m:30076
 7.
 Bonilla, A and Fariña, J.C.: approximation and extension on closed sets, Canad. Math. Bull 38, (1995), 2333. MR 96e:30093
 8.
 Bonilla, A and Fariña, J.C.: Elliptic fusion lemma, Math. Japon., 41 (1995), 441445. MR 96d:30047
 9.
 Bonilla, A and Fariña, J.C.: Uniform approximation by solutions of elliptic equations with continuous extension to the boundary, Complex Variables, 28 (1995), 111120. MR 2000f:41028
 10.
 Dufresnoy, A., Gauthier, P.M. and Ow, W.H.: Uniform approximation on closed sets by solutions of elliptic partial differential equations, Complex Variables, 6 (1986), 235247. MR 88b:35086
 11.
 Fariña, J. C.: Lip approximation on closed sets, J. Analyse Math., 57 (1991), 152171. MR 94e:30013
 12.
 Gardiner, S. J.: Superharmonic extension and harmonic approximation, Ann. Inst. Fourier, 44 (1994), 6591. MR 95a:31006
 13.
 Gardiner, S. J.: Harmonic approximation, Cambridge University Press, 1995. MR 96j:31001
 14.
 Gardiner, S. J.: Harmonic approximation with continuous extension to the boundary, J. Analyse Math., 68 (1996), 95106. MR 98e:31004
 15.
 Gardiner, S. J.: Decomposition of approximable harmonic functions, Math. Ann. 308 (1997), 175185. MR 98e:31005
 16.
 Goldstein, M. and Ow, W. H.: Uniform harmonic approximation with continuous extension to the boundary, Canad. J. Math., 40 (1988), 13751388. MR 90d:41033
 17.
 Goldstein, M. and Ow, W. H.: A characterization of harmonic Arakelyan sets, Proc. Amer. Math. Soc., 119 (1993), 811816. MR 93m:31005
 18.
 Goluzin, G.M., Geometric theory of functions of a complex variable, English transl. Amer. Math. Soc., Providence, R.I., 1969. MR 40:308
 19.
 Johnston, E. H., The boundary modulus of continuity of harmonic functions, Pacific J. Math. 90(1980), 8798. MR 82a:31002
 20.
 Mateu, J. and Orobitg, J.: Lipschitz approximation by harmonic functions and some applications to spectral sinthesis, Indiana Univ. Math. J., 39 (1990), 703736. MR 92e:46052
 21.
 Paramonov, P. and Verdera, J.: Approximation by solutions of elliptic equations on closed subsets of Euclidean space, Math. Scand., 74 (1994), 249259. MR 95i:41040
 22.
 Paramonov, P.: approximation by harmonic polynomial in compact sets in , Russian Acad. Sci. Sb. Math., 78 (1994), 231251.
 23.
 Paramonov, P.: Harmonic polynomial approximation on compact subsets of the plane, Preprint Universitat Autonoma de Barcelona, 134, Setembre 1991.
 24.
 Roth, A.: Uniform and tangential approximation by meromorphic functions on closed sets, Canad. J. Math., 28 (1976), 104111. MR 57:9978
 25.
 Roth, A.: Uniform approximation by meromorphic functions on closed sets with continuous extension into the boundary, Canad. J. Math., 30 (1978), 12431255. MR 80d:30037
 26.
 Stray, A.: Decomposition of approximable functions, Annals of Math., 120 (1984), 225235. MR 86b:30060
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
31A05,
30E10
Retrieve articles in all journals
with MSC (2000):
31A05,
30E10
Additional Information
A. Bonilla
Affiliation:
Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Canary Islands, Spain
Email:
abonilla@ull.es
J. C. Fariña
Affiliation:
Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Canary Islands, Spain
Email:
jcfarina@ull.es
DOI:
http://dx.doi.org/10.1090/S0002993901058683
PII:
S 00029939(01)058683
Received by editor(s):
January 30, 2000
Published electronically:
February 9, 2001
Additional Notes:
This work was supported in part by Consejería de Educación, Gobierno Autónomo de Canarias, Proyecto PI 1999/105.
Communicated by:
J. Marshall Ash
Article copyright:
© Copyright 2001 American Mathematical Society
