Structure of the fixed point set and common fixed points of asymptotically nonexpansive mappings

Authors:
T. Domínguez Benavides and P. Lorenzo Ramírez

Journal:
Proc. Amer. Math. Soc. **129** (2001), 3549-3557

MSC (2000):
Primary 47H09, 47H10

DOI:
https://doi.org/10.1090/S0002-9939-01-06141-X

Published electronically:
May 3, 2001

MathSciNet review:
1860487

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be a Banach space, a weakly compact convex subset of and an asymptotically nonexpansive mapping. Under the usual assumptions on which assure the existence of fixed point for , we prove that the set of fixed points is a nonexpansive retract of . We use this result to prove that all known theorems about existence of fixed point for asymptotically nonexpansive mappings can be extended to obtain a common fixed point for a commuting family of mappings. We also derive some results about convergence of iterates.

**[1]**R.E. Bruck. Properties of fixed-point sets of nonexpansive mappings in Banach spaces.*Trans. Amer. Math. Soc.***179**(1973), 251-262. MR**48:2843****[2]**R.E. Bruck. A common fixed point theorem for a commuting family of nonexpansive mappings.*Pacific J. Math.***53**(1974), 59-71. MR**50:14387****[3]**R.E. Bruck. Asymptotic behavior of nonexpansive mappings.*Contemp. Math.***18**(1983), 1-47. MR**85d:47057****[4]**R.E. Bruck, T. Kuczumow and S. Reich. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property.*Colloq. Math.***65**(1993), 169-179. MR**94h:47106****[5]**K. Goebel and W.A. Kirk. A fixed point theorem for asymptotically nonexpansive mappings.*Proc. Amer. Math. Soc.***35**(1972), 171-174. MR**45:7552****[6]**K. Goebel, W.A. Kirk and R.L. Thele. Uniformly lipschitzian families of transformations in Banach spaces.*Canad. J. Math.***26**(1974), 1245-1256. MR**50:10919****[7]**A. Jimenez-Melado. Stability of weak normal structure in James quasi reflexive space.*Bull. Austral. Math. Soc.***46**(1992), 367-372. MR**93m:46011****[8]**T.-H. Kim and H.-K. Xu. Remarks on asymptotically nonexpansive mappings.*Nonlinear Analysis***41**(2000), 405-415. MR**2001b:47089****[9]**W.A. Kirk and S.S. Shin. Fixed point theorems in hyperconvex spaces.*Houston J. Math.***23**(1997), 175-188. MR**2000d:47080****[10]**P.-K. Lin. Asymptotic behavior for asymptotically nonexpansive mappings.*Nonlinear Analysis***26**(1996), 1137-1141. MR**97e:47092****[11]**P.-K. Lin, K.-K. Tan and H.-K. Xu. Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings.*Nonlinear Analysis***24**(1995), 929-946. MR**96a:47094****[12]**C. Martínez-Yañez. A fixed point theorem on -uniformly rotund spaces.*Nonlinear Analysis***13**(1989), 857-861. MR**90g:47101****[13]**D. Tingley. An asymptotically nonexpansive commutative semigroup with no fixed points.*Proc. Amer. Math. Soc.***97**(1986), 107-113. MR**87g:47113****[14]**H.-K. Xu. Existence and iterative convergence for fixed points of nonlinear mappings.*Ph.D. Thesis*, (1988), Xi'an Jiaotong University. (In Chinese).**[15]**H.-K. Xu. Existence and convergence for fixed points of mappings of asymptotically nonexpansive type.*Nonlinear Analysis***16**(1991), 1139-1146. MR**92h:47089****[16]**X.T. Yu and X. Dai. A fixed point theorem of asymptotically nonexpansive mappings.*J. Math. (PRC)***6**(1986), 255-262. MR**87k:47135**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47H09,
47H10

Retrieve articles in all journals with MSC (2000): 47H09, 47H10

Additional Information

**T. Domínguez Benavides**

Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain

Email:
tomasd@cica.es

**P. Lorenzo Ramírez**

Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain

Email:
ploren@cica.es

DOI:
https://doi.org/10.1090/S0002-9939-01-06141-X

Keywords:
Nonexpansive mapping,
asymptotically nonexpansive mapping,
retraction,
common fixed points,
convergence of iterates

Received by editor(s):
April 10, 2000

Published electronically:
May 3, 2001

Additional Notes:
This research is partially supported by D.G.I.C.Y.T. PB 96-1338-C01-C02 and J.A. FQM 0127.

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2001
American Mathematical Society