Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A global pinching theorem for surfaces with constant mean curvature in $S^3$


Authors: Yi-Jung Hsu and Tai-Ho Wang
Journal: Proc. Amer. Math. Soc. 130 (2002), 157-161
MSC (2000): Primary 53C40, 53C42
DOI: https://doi.org/10.1090/S0002-9939-01-06030-0
Published electronically: May 3, 2001
MathSciNet review: 1855633
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

Let $M$ be a compact immersed surface in the unit sphere $S^3$ with constant mean curvature $H$. Denote by $\phi$ the linear map from $T_p(M)$ into $T_p(M)$, $\phi=A-\frac H2I$, where $A$ is the linear map associated to the second fundamental form and $I$ is the identity map. Let $\Phi$ denote the square of the length of $\phi$. We prove that if $\vert\vert\Phi\vert\vert _{L^2}\leq C$, then $M$ is either totally umbilical or an $H(r)$-torus, where $C$ is a constant depending only on the mean curvature $H$.


References [Enhancements On Off] (What's this?)

  • 1. H. Alencar and M. do Carmo, Hypersurface with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), 1223-1229. MR 94f:53108
  • 2. S. S. Chern, On surface of constant mean curvature in a three-dimensional space of constant curvature, Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., 1007, Springer-Verlag, Berlin, New York, 1983, pp. 104-108. MR 86b:53058
  • 3. S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifold of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59-75. MR 42:8424
  • 4. S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. II, Michigan Math. J. 5(1985), 5-12. MR 20:4301
  • 5. H. Hopf, Differential geometry in the large, Lecture Notes in Math., 1000, Springer-Verlag, 1983, pp. 136-146. MR 85b:53001
  • 6. Y. J. Hsu, A global pinching theorem for compact minimal surfaces in $S^3$, Proc. Amer. Math. Soc. 113(1991), 1041-1044. MR 92c:53040
  • 7. H. B. Lawson, Complete minimal surfaces in $ S^3 $ , Ann. of Math. 92(1970), 335-374. MR 42:5170
  • 8. C. L. Shen, A global pinching theorem of minimal hypersurfaces in the sphere, Proc. Amer. Math. Soc. 105(1989), 192-198. MR 90c:53162

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C40, 53C42

Retrieve articles in all journals with MSC (2000): 53C40, 53C42


Additional Information

Yi-Jung Hsu
Affiliation: Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan
Email: yjhsu@math.nctu.edu.tw

Tai-Ho Wang
Affiliation: Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan
Email: teich@math.sinica.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-01-06030-0
Keywords: Mean curvature, sphere, totally umbilical
Received by editor(s): April 17, 1997
Received by editor(s) in revised form: May 10, 2000
Published electronically: May 3, 2001
Communicated by: Christopher Croke
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society