Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An elementary proof of sharp Sobolev embeddings


Authors: Jan Malý and Lubos Pick
Journal: Proc. Amer. Math. Soc. 130 (2002), 555-563
MSC (1991): Primary 46E35; Secondary 46E30, 26D10
DOI: https://doi.org/10.1090/S0002-9939-01-06060-9
Published electronically: June 19, 2001
MathSciNet review: 1862137
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary unified and self-contained proof of sharp Sobolev embedding theorems. We introduce a new function space and use it to improve the limiting Sobolev embedding theorem due to Brézis and Wainger.


References [Enhancements On Off] (What's this?)

  • 1. S. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 1995 1033-1074. MR 97c:46039
  • 2. C. Bennett, R. De Vore and R. Sharpley, Weak- $L\sp\infty$ and $BMO$, Annals of Math. 113 1981 601-611. MR 82h:46047
  • 3. C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics Vol. 129, Academic Press, Boston, 1988. MR 89e:46001
  • 4. H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Eq. 5 1980 773-789. MR 81k:46028
  • 5. A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 1996 39-65. MR 97h:46044
  • 6. D.E. Edmunds, R. Kerman and L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 2000 307-355. MR 2000m:46070
  • 7. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969 (Second edition 1996). MR 41:1976
  • 8. K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 1979, 77-102. MR 81j:31007
  • 9. J.A. Hempel, G.R. Morris and N.S. Trudinger, On the sharpness of a limiting case of the Sobolev imbedding theorem, Bull. Australian Math. Soc. 3 1970, 369-373. MR 43:6717
  • 10. J. Malý and W.P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, AMS Mathematical Surveys and Monographs Vol. 51, Amer. Math. Soc., Providence, 1997. MR 98h:35080
  • 11. V. G. Maz'ya, A theorem on the multidimensional Schrödinger operator, (Russian), Izv. Akad. Nauk. 28 1964, 1145-1172.
  • 12. V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1975.
  • 13. R. O'Neil, Convolution operators and $L_{(p,q)}$ spaces, Duke Math. J. 30 1963, 129-142. MR 26:4193
  • 14. J. Peetre, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 1966, 279-317. MR 36:4334
  • 15. S. I. Pokhozhaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSR 165 1965 36-39. MR 33:411
  • 16. S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Transl. of Mathem. Monographs, American Math. Soc. Vol. 7, Providence, 1963. MR 29:2624
  • 17. E.M. Stein, Singular Integrals and Differentiability Properties of Functions Princeton University Press, Princeton, NJ, 1970. MR 44:7280
  • 18. L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Un. Mat. Ital. 8 1-B 1998, 479-500. MR 99k:46060
  • 19. N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 1967, 473-483. MR 35:7121
  • 20. V.I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 138 1961, 805-808. MR 25:4236

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E35, 46E30, 26D10

Retrieve articles in all journals with MSC (1991): 46E35, 46E30, 26D10


Additional Information

Jan Malý
Affiliation: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
Email: maly@karlin.mff.cuni.cz

Lubos Pick
Affiliation: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
Email: pick@karlin.mff.cuni.cz

DOI: https://doi.org/10.1090/S0002-9939-01-06060-9
Received by editor(s): May 3, 2000
Received by editor(s) in revised form: July 14, 2000
Published electronically: June 19, 2001
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society