Harmonic mappings of the Sierpinski gasket to the circle

Author:
Robert S. Strichartz

Journal:
Proc. Amer. Math. Soc. **130** (2002), 805-817

MSC (2000):
Primary 28A80, 58E20

Published electronically:
August 28, 2001

MathSciNet review:
1866036

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Harmonic mappings from the Sierpinski gasket to the circle are described explicitly in terms of boundary values and topological data. In particular, all such mappings minimize energy within a given homotopy class. Explicit formulas are also given for the energy of the mapping and its normal derivatives at boundary points.

**[EL1]**J. Eells and L. Lemaire,*A report on harmonic maps*, Bull. London Math. Soc.**10**(1978), no. 1, 1–68. MR**495450**, 10.1112/blms/10.1.1**[EL2]**J. Eells and L. Lemaire,*Another report on harmonic maps*, Bull. London Math. Soc.**20**(1988), no. 5, 385–524. MR**956352**, 10.1112/blms/20.5.385**[Ki1]**Jun Kigami,*A harmonic calculus on the Sierpiński spaces*, Japan J. Appl. Math.**6**(1989), no. 2, 259–290. MR**1001286**, 10.1007/BF03167882**[Ki2]**Jun Kigami,*Harmonic calculus on p.c.f. self-similar sets*, Trans. Amer. Math. Soc.**335**(1993), no. 2, 721–755. MR**1076617**, 10.1090/S0002-9947-1993-1076617-1**[Ki3]**J. Kigami,*Harmonic metric and Dirichlet form on the Sierpiński gasket*, Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990) Pitman Res. Notes Math. Ser., vol. 283, Longman Sci. Tech., Harlow, 1993, pp. 201–218. MR**1354156****[Ki4]**J. Kigami,*Analysis on Fractals*, Cambridge University Press, 2001.**[S]**R. S. Strichartz,*Analysis on fractals*, Notices AMS**46**(1999), 1199-1208.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
28A80,
58E20

Retrieve articles in all journals with MSC (2000): 28A80, 58E20

Additional Information

**Robert S. Strichartz**

Affiliation:
Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853

Email:
str@math.cornell.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-01-06243-8

Keywords:
Sierpinski gasket,
harmonic mappings,
analysis on fractals,
self--similar Dirichlet form

Received by editor(s):
September 15, 2000

Published electronically:
August 28, 2001

Additional Notes:
This research was supported in part by the National Science Foundation, Grant DMS 9970337

Communicated by:
Christopher D. Sogge

Article copyright:
© Copyright 2001
American Mathematical Society