Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The diffeomorphism type of certain $S^{3}$-bundles over $S^{4}$


Authors: Marc Sanchez and Frederick Wilhelm
Journal: Proc. Amer. Math. Soc. 130 (2002), 1139-1143
MSC (1991): Primary 53C20
DOI: https://doi.org/10.1090/S0002-9939-01-06380-8
Published electronically: November 9, 2001
MathSciNet review: 1873789
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that the unit tangent bundle of $S^{4}$ is diffeomorphic to the total space of a certain principal $S^{3}$-bundle over $S^{4}$, solving a problem of James and Whitehead.


References [Enhancements On Off] (What's this?)

  • [CrowEsc] D. Crowley and C. Escher, A classification of $S^{3}$-bundles over $S^{4},$ preprint.
  • [Cerf] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0),$ Lecture Notes in Mathematics, Vol. 53, Springer Verlag, Berlin, 1968. MR 37:4824
  • [GluWarZil] H. Gluck, F. Warner, and W. Ziller, The geometry of the Hopf fibrations L'Enseignement Math. 32 (1986) 173-198. MR 88e:53067
  • [GromMey] D. Gromoll and W. Meyer, An exotic sphere with nonnegative sectional curvature, Ann. of Math. 100 (1974) 401-406. MR 51:11347
  • [GrovZil] K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Annals of Math. 152 (2000) 331-367. CMP 2001:03
  • [Hat] A. Hatcher, A proof of the Smale Conjecture, $ Diff(S^{3})\simeq O(4)$, Ann. of Math. 117 (1983) 553-607. MR 85c:57008
  • [Huse] D. Husemoller, Fibre Bundles, 3rd edition, Springer-Verlag, 1994. MR 94k:55001
  • [JamWhi] I. James and J. Whitehead, The homotopy theory of sphere bundles over spheres $\left( II\right) ,$ Proc. London Math. Soc. 5 (1955) 148-166. MR 16:948d
  • [Mil] J. Milnor, On manifolds homeomorphic to the $7$-sphere, Annals of Math. 64 (1956) 399-405. MR 18:498d
  • [PetWil] P. Petersen and F. Wilhelm, Examples of Riemannian manifolds with positive curvature almost everywhere, Geometry and Topology 3 (1999) 331-367, http://www.maths.warwick.ac.uk/gt/GTVol3/paper14.abs.html. MR 2000g:53030
  • [Rig] A. Rigas, Some bundles of non-negative curvature, Math. Ann. 232 (1978) 187-193. MR 57:4188
  • [Steen] N. Steenrod, Topology of Fiber Bundles, Princeton Mathematical Series, Princeton University Press, 1951. MR 12:522b
  • [Wil1] F. Wilhelm, Exotic spheres with lots of positive curvatures, J. Geom. Anal. 11 (2001) 161-186. CMP 2001:12
  • [Wil2] F. Wilhelm, An exotic sphere with positive curvature almost everywhere, J. Geom. Anal., to appear.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C20

Retrieve articles in all journals with MSC (1991): 53C20


Additional Information

Marc Sanchez
Affiliation: 4243 Edgewood Place, Riverside, California 92506
Email: marc.sanchez@usa.net

Frederick Wilhelm
Affiliation: Department of Mathematics, University of California, Riverside, California 92521-0135
Email: fred@math.ucr.edu

DOI: https://doi.org/10.1090/S0002-9939-01-06380-8
Keywords: Unit tangent bundle
Received by editor(s): March 20, 2000
Published electronically: November 9, 2001
Additional Notes: This work was partially suported by the NSF
Communicated by: Ralph Cohen
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society