The diffeomorphism type of certain -bundles over

Authors:
Marc Sanchez and Frederick Wilhelm

Journal:
Proc. Amer. Math. Soc. **130** (2002), 1139-1143

MSC (1991):
Primary 53C20

DOI:
https://doi.org/10.1090/S0002-9939-01-06380-8

Published electronically:
November 9, 2001

MathSciNet review:
1873789

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we show that the unit tangent bundle of is diffeomorphic to the total space of a certain principal -bundle over , solving a problem of James and Whitehead.

**[CrowEsc]**D. Crowley and C. Escher,*A classification of**-bundles over*preprint.**[Cerf]**J. Cerf,*Sur les difféomorphismes de la sphère de dimension trois*Lecture Notes in Mathematics, Vol. 53, Springer Verlag, Berlin, 1968. MR**37:4824****[GluWarZil]**H. Gluck, F. Warner, and W. Ziller,*The geometry of the Hopf fibrations*L'Enseignement Math. 32 (1986) 173-198. MR**88e:53067****[GromMey]**D. Gromoll and W. Meyer,*An exotic sphere with nonnegative sectional curvature*, Ann. of Math.**100**(1974) 401-406. MR**51:11347****[GrovZil]**K. Grove and W. Ziller,*Curvature and symmetry of Milnor spheres*, Annals of Math.**152**(2000) 331-367. CMP**2001:03****[Hat]**A. Hatcher,*A proof of the Smale Conjecture,*, Ann. of Math.**117**(1983) 553-607. MR**85c:57008****[Huse]**D. Husemoller,__Fibre Bundles__, 3rd edition, Springer-Verlag, 1994. MR**94k:55001****[JamWhi]**I. James and J. Whitehead,*The homotopy theory of sphere bundles over spheres*Proc. London Math. Soc.**5**(1955) 148-166. MR**16:948d****[Mil]**J. Milnor,*On manifolds homeomorphic to the -sphere*, Annals of Math.**64**(1956) 399-405. MR**18:498d****[PetWil]**P. Petersen and F. Wilhelm,*Examples of Riemannian manifolds with positive curvature almost everywhere*, Geometry and Topology**3**(1999) 331-367, http://www.maths.warwick.ac.uk/gt/GTVol3/paper14.abs.html. MR**2000g:53030****[Rig]**A. Rigas,*Some bundles of non-negative curvature*, Math. Ann. 232 (1978) 187-193. MR**57:4188****[Steen]**N. Steenrod,*Topology of Fiber Bundles*, Princeton Mathematical Series, Princeton University Press, 1951. MR**12:522b****[Wil1]**F. Wilhelm,*Exotic spheres with lots of positive curvatures*, J. Geom. Anal.**11**(2001) 161-186. CMP**2001:12****[Wil2]**F. Wilhelm,*An exotic sphere with positive curvature almost everywhere*, J. Geom. Anal., to appear.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
53C20

Retrieve articles in all journals with MSC (1991): 53C20

Additional Information

**Marc Sanchez**

Affiliation:
4243 Edgewood Place, Riverside, California 92506

Email:
marc.sanchez@usa.net

**Frederick Wilhelm**

Affiliation:
Department of Mathematics, University of California, Riverside, California 92521-0135

Email:
fred@math.ucr.edu

DOI:
https://doi.org/10.1090/S0002-9939-01-06380-8

Keywords:
Unit tangent bundle

Received by editor(s):
March 20, 2000

Published electronically:
November 9, 2001

Additional Notes:
This work was partially suported by the NSF

Communicated by:
Ralph Cohen

Article copyright:
© Copyright 2001
American Mathematical Society