Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Proof of the prime power conjecture for projective planes of order $n$ with abelian collineation groups of order $n^2$


Authors: Aart Blokhuis, Dieter Jungnickel and Bernhard Schmidt
Journal: Proc. Amer. Math. Soc. 130 (2002), 1473-1476
MSC (2000): Primary 51E15; Secondary 05B10
DOI: https://doi.org/10.1090/S0002-9939-01-06388-2
Published electronically: December 20, 2001
MathSciNet review: 1879972
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be an abelian collineation group of order $n^2$ of a projective plane of order $n$. We show that $n$ must be a prime power, and that the $p$-rank of $G$ is at least $b+1$ if $n=p^b$ for an odd prime $p$.


References [Enhancements On Off] (What's this?)

  • 1. J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 62 (1954), 156-186. MR 16:64a
  • 2. P. Dembowski, T.G. Ostrom, Planes of order $n$ with collineation groups of order $n^2$. Math. Z. 103 (1968), 239-258. MR 37:2075
  • 3. P. Dembowski, F.C. Piper, Quasiregular collineation groups of finite projective planes. Math. Z. 99 (1967), 53-75. MR 35:6576
  • 4. M.J. Ganley, On a paper of Dembowski and Ostrom. Arch. Math. 27 (1976), 93-98. MR 54:13716
  • 5. M.J. Ganley, E. Spence, Relative difference sets and quasiregular collineation groups. J. Comb. Theory A 19 (1975), 134-153. MR 51:12568
  • 6. S.L. Ma, Planar functions, relative difference sets and character theory. J. Algebra 185 (1996), 342-356. MR 98b:05016
  • 7. A. Pott, Finite geometry and character theory. Lecture Notes 1601, Springer 1995. MR 98j:05032

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 51E15, 05B10

Retrieve articles in all journals with MSC (2000): 51E15, 05B10


Additional Information

Aart Blokhuis
Affiliation: Department of Mathematics and Computing Science, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, Netherlands
Email: aart@win.tue.nl

Dieter Jungnickel
Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstraße 14, 86135 Augsburg, Germany
Email: jungnickel@math.uni-augsburg.de

Bernhard Schmidt
Affiliation: Institut für Mathematik, Universität Augsburg, Universitätsstraße 14, 86135 Augsburg, Germany
Email: schmidt@math.uni-augsburg.de

DOI: https://doi.org/10.1090/S0002-9939-01-06388-2
Received by editor(s): November 17, 2000
Published electronically: December 20, 2001
Communicated by: Stephen D. Smith
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society