Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On an adjoint functor to the Thom functor


Author: Yuli B. Rudyak
Journal: Proc. Amer. Math. Soc. 130 (2002), 1503-1506
MSC (2000): Primary 55R25; Secondary 18A40
DOI: https://doi.org/10.1090/S0002-9939-01-06415-2
Published electronically: December 20, 2001
MathSciNet review: 1879976
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a right adjoint functor to the Thom functor, i.e., to the functor which assigns the Thom space $T\xi $ to a vector bundle $\xi $.


References [Enhancements On Off] (What's this?)

  • [B] J. Beck, On $H$-spaces and infinite loop spaces, Category Theory, Homotopy Theory and Their Applications III. Lecture Notes in Mathematics 99, Springer, Berlin Heidelberg New York, 1969,, pp. 139-153. MR 40:2079
  • [BV] J.M. Boardman, R.M.Vogt,, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer, Berlin Heidelberg New York, 1973. MR 54:8623a
  • [Bo] A.K. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J.Math. 109 (1987), 361-394. MR 88j:55017
  • [BP] E.H. Brown, F.P. Peterson, A universal space for normal bundles of $n$-manifolds, Comment. Math. Helv. 54 (1979), 405-430. MR 80k:57055
  • [C] R. Cohen, The immersion conjecture for differentiable manifolds., Ann of Math 122 (1985), 237-328. MR 86m:57030
  • [H] D. Husemoller, Fibre bundles. - McGraw-Hill, New York, 1966. MR 37:4821
  • [L] J. Lannes, La conjecture des immersions (d'après R.L. Cohen, E.H.Brown, F.P.Peterson et al.), Bourbaki Seminar 1981/1982, Soc. Math. France, Paris, 1982, pp. 331-346. MR 84i:57020
  • [M] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics 271, Springer, Berlin Heidelberg New York, 1972. MR 54:8623b
  • [PS] R. Patterson, R. Stong, Orientability of bundles, Duke Math. J. 39 (197), 619-622. MR 47:4248
  • [R1] Yu. Rudyak, The spectra $k$ and $kO$ are not Thom spectra, Group Representations: Cohomology, Group Actions and Topology, Proc. Symp. Pure Math. 63, Amer. Math. Soc, Providence, RI, 1998, pp. 475-483. MR 98m:55007
  • [R2] Yu. Rudyak, On Thom Spectra, Orientability and Cobordism, Springer, Berlin, 1998. MR 99f:55001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55R25, 18A40

Retrieve articles in all journals with MSC (2000): 55R25, 18A40


Additional Information

Yuli B. Rudyak
Affiliation: Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany
Address at time of publication: Department of Mathematics, University of Florida, Gainesville, Florida 32611-8105
Email: rudyak@mathi.uni-heidelberg.de, rudyak@math.ufl.edu

DOI: https://doi.org/10.1090/S0002-9939-01-06415-2
Received by editor(s): April 2, 1999
Received by editor(s) in revised form: March 26, 2000
Published electronically: December 20, 2001
Communicated by: Ralph Cohen
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society