Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the differentiability of first integrals of two dimensional flows


Authors: Weigu Li, Jaume Llibre, Marcel Nicolau and Xiang Zhang
Journal: Proc. Amer. Math. Soc. 130 (2002), 2079-2088
MSC (2000): Primary 34C05, 34C40, 37C10
DOI: https://doi.org/10.1090/S0002-9939-02-06310-4
Published electronically: January 17, 2002
MathSciNet review: 1896044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By using techniques of differential geometry we answer the following open problem proposed by Chavarriga, Giacomini, Giné, and Llibre in 1999. For a given two dimensional flow, what is the maximal order of differentiability of a first integral on a canonical region in function of the order of differentiability of the flow? Moreover, we prove that for every planar polynomial differential system there exist finitely many invariant curves and singular points $\gamma_i,\,i=1,2,\cdots,l$, such that $\mathbb R^2\backslash\left(\bigcup^{l}_{i=1}\gamma_i\right)$ has finitely many connected open components, and that on each of these connected sets the system has an analytic first integral. For a homogeneous polynomial differential system in $\mathbb R^3$, there exist finitely many invariant straight lines and invariant conical surfaces such that their complement in $\mathbb R^3$ is the union of finitely many open connected components, and that on each of these connected open components the system has an analytic first integral.


References [Enhancements On Off] (What's this?)

  • 1. D. V. ANOSOV AND V. I. ARNOLD, Dynamical Systems I , Springer-Verlag, Berlin Heidelberg, 1988.MR 89g:58060
  • 2. M.I.T. CAMACHO, Geometric properties of homogeneous vector fields of degree two in $\mathbb R^3$, Trans. Amer. Math. Soc. 268 (1981), 79-101.MR 83b:58041
  • 3. J. CHAVARRIGA, H. GIACOMINI, J. GINÉ, AND J. LLIBRE, On the integrability of two-dimensional flows, J. Differential Equations 157 (1999), 163-182.MR 2000h:37058
  • 4. M. P. DO CARMO, Riemannian geometry, Birkhäuser, Boston, 1992.MR 92i:53001
  • 5. J. ECALLE, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992. MR 97f:58104
  • 6. M.W. HIRSCH AND S. SMALE, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press, New York, 1974. MR 58:6484
  • 7. W. HUEBSCH AND M. MORSE, Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2) 11 (1962), 291-318. MR 30:2516
  • 8. YU. S. IL'YASHENKO, Finiteness Theorems for Limit Cycles, Transl. Math. Monographs 94, Amer. Math. Soc., Providence, R. I., 1991.MR 92k:58221
  • 9. S. LEFSCHETZ, Differential Equations: Geometric Theory, Dover Publications, Inc., New York, 1977. MR 55:8441
  • 10. L. MARKUS, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76 (1954), 127-148. MR 15:704a
  • 11. D. A. NEUMANN, Classification of continuous flows on 2-manifolds, Proc. of Amer. Math. Soc. 48 (1975), 73-81. MR 50:8609
  • 12. R. ROUSSARIE, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem, Progress in Mathematics 164, Birkhauser Verlag, Basel, Switzerland, 1998. MR 99k:58129
  • 13. H.L. ROYDEN, The analytic approximation of differentiable mappings, Math. Ann. 139 (1960), 171-179. MR 22:4067
  • 14. S. SCHECTER AND M. SINGER, Planar polynomial foliations, Proc. Amer. Math. Soc. 79 (1980), 649-656. MR 82j:58096a
  • 15. F.W. WARNER, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., London, 1971. MR 45:4312
  • 16. H. WHITNEY, Differentiable manifolds, Annals of Math. 37 (1936), 645-680.
  • 17. YE YANQIAN, Qualitative Theory of polynomial Differential Systems (in Chinese), Shanghai Scientific $\&$ Technical Publishers, Shanghai, 1995.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34C05, 34C40, 37C10

Retrieve articles in all journals with MSC (2000): 34C05, 34C40, 37C10


Additional Information

Weigu Li
Affiliation: Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China
Email: weigu@sxx0.math.pku.edu.cn

Jaume Llibre
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 – Bellaterra, Barcelona, Spain
Email: jllibre@mat.uab.es

Marcel Nicolau
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 – Bellaterra, Barcelona, Spain
Email: nicolau@mat.uab.es

Xiang Zhang
Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
Email: xzhang@pine.njnu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-02-06310-4
Keywords: Two dimensional flows, polynomial systems, first integrals, differentiability
Received by editor(s): August 4, 2000
Received by editor(s) in revised form: February 16, 2001
Published electronically: January 17, 2002
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society